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4. Meta-learning for Continuous Adaptation 6. Experiments

Abstract
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The ability to continuously learn and adapt from limited experience in nonstationary environments | | |
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IS an important milestone on the path towards general intelligence. o 1000 —e— MLP
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Problem. We define a setup for continuous adaptation in a realistic few-shot regime. —> @ @ = O — ;SLzTM + meta-updates
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Algorithm. A variant of gradient-based meta-learning. Training is done on pairs of temporally

, L | - Real tasks are rarely 1.i.d. There are often relationships that we can to exploit. Assuming that the tasks 1 3 5 7 1 3 5 7 1 3 5 7
shifted tasks. The agent learns to anticipate and adapt to nonstationary transitions.

. . N . C ive episod
change over time consistently, we can learn to anticipate the changes and adapt to the temporal shifts. onsecutive episodes

Evaluation. Use nonstationary locomotion and competitive multi-agent environments. Figure 1: Episodic rewards for 7 consecutive episodes in 3 held out nonstationary locomotion environments.

Define iterated games to consistently evaluate adaptation in the multi-agent setting. Meta-learn on pairs of tasks by solv_ing:

L Multi-agent competition
minEpr) pr,n) | ) L1ma(0) |, where
1. Motivation 1=1 Agent: Ant B RL?2 W LSTM + PPO-tracking W LSTM + meta-updates
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- Nonstationary worlds require fast continuous adaptation. Lr,1,,(0) : T4 ~Pr,(T]0) [ Ti+1e~ P, (T]9) [LT¢+1(TZ+1>¢> | T 79” A 'M
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- A step towards continual, n.ever-en.dlng Igarnmg [1]: | The algorithm = Ny 0.0 M mMW”, Ny N\ 'HW“ WW"
A system that can keep learning and improving over a lifetime. - -

0.0
0 25 50 75 100 0 25 50 75 100 0 25 50 165 100

Consecutive rounds

Meta-learning at training time:

- Sample a batch of task pairs, { (13, T;11) " ;.

- Rollout trajectories 7'9”( for 1; (the first task in each pair) using 7.
- Compute ¢ (Tel‘K, 0. oz) and rollout 7 for each 1; 1 using .

Figure 2: Win rates for different adaptation strategies in iterated games with opponents pretrained via self-play. Competence
of the opponents was increasing from round to round based on the precomputed policies at different stages of self-play.

Intermediate steps

2. Background

Learning to learn for fast adaptation - Update ¢ and « using the stochastic gradient of the meta-loss.
100 Policy + adaptation
Given a task description, a good adaptation rule must generate a model suitable for the task at hand: deterministic  stochastic  gradient Q mem MLP
adaptation T:’ 75 - mll:E+PPf)-tra<;kitng
- . . + Mmelta- ales
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distribution over adaptation rule takes a task o — i - - . - - 9 LSTM + PPO-tracking
tasks/datasets description and outputs a model 1 E B/ i . I S LSTM + meta-updates
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0 \ | N.B.: The highlighted term was missing in the original derivation of the policy gradients for MAML-RL, reature generation (#)
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L1 [QH(T)] =FE..p, [L (f¢(z))] 7 ¢ — gg(T) ) i i which made the gradient estimators biased [2]. A general solution for such issues is developed in [4]. 40 40 40
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o / .___}ng;]?r:ag_ezs_ ________ - e_s_t_s_e_t;____. Adaptation .at executl.on time: | | | by i 0 30 30 30
examples for task T - Interact with the environment using 7. Store all trajectories e Th Q; =T~ -
\ P | In few-shot classification, tasks are described and importance weights w@/% in the experience buffer. - T - g RN = 90 20 20
by small labeled datasets. - Before each episode, compute ¢ using importance-corrected (0% %) Poicy parameter space MLP LSTM MLP LSTM MLP LSTM

no adaptation @ PPO-tracking B meta-updates @ RL°

Model-agnostic meta-learning (MAML) adaptation updates using trajectories from the buffer.
| K () Figure 3: Top: Evolution of a population of 1050 agents. Bottom: TrueSkill of the top-performing agents in the population.
L . . Intuition: L To\T k LK -
- Adaptation via a gradient steps on a task-specific loss: — meta-learning i:=0—a K Z <7T¢' (Tk)) VoL(7%), T ExperienceButler,
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. At meta-training, search for a good parameter initialization: VLI O\ *03 5. Environments & Setup Limitations: Future work:
. s N 9 e . Opponent . Gradient-based adaptation requires estimating - Adaptation + model-based RL.
m o Y7 Ant Bu L L. _
m@m Z T, (f H—aveﬁ?pi (fe)) 1 2 \ / . second-order derivatives. This is computation- . Adaptation + curriculum learning/generation.
T.~P figure from [2] B> " ag - PR atami and sample-inefficient (needs large batches).

| | - Multi-step adaptation (i.e., planning with tasks);
- Unlikely to work with sparse rewards. better use of historical information.
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Legs with dynamically scaled torques

3. Adaptation as Inference

Iterated adaptation games
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