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Abstract
The score function estimator is widely used for
estimating gradients of stochastic objectives in
stochastic computation graphs (SCG), e.g., in re-
inforcement learning and meta-learning. While
deriving the first order gradient estimators by dif-
ferentiating a surrogate loss (SL) objective is
computationally and conceptually simple, using
the same approach for higher order derivatives is
more challenging. Firstly, analytically deriving
and implementing such estimators is laborious
and not compliant with automatic differentiation.
Secondly, repeatedly applying SL to construct
new objectives for each order derivative involves
increasingly cumbersome graph manipulations.
Lastly, to match the first order gradient under
differentiation, SL treats part of the cost as a
fixed sample, which we show leads to missing
and wrong terms for estimators of higher order
derivatives. To address all these shortcomings in a
unified way, we introduce DICE, which provides
a single objective that can be differentiated repeat-
edly, generating correct estimators of derivatives
of any order in SCGs. Unlike SL, DICE relies on
automatic differentiation for performing the req-
uisite graph manipulations. We verify the correct-
ness of DICE both through a proof and numerical
evaluation of the DICE derivative estimates. We
also use DICE to propose and evaluate a novel
approach for multi-agent learning. Our code is
available at https://goo.gl/xkkGxN.

1. Introduction
The score function trick is used to produce Monte Carlo
estimates of gradients in settings with non-differentiable ob-
jectives, e.g., in meta-learning and reinforcement learning.
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Estimating the first order gradients is computationally and
conceptually simple. While the gradient estimators can be
directly defined, it is often more convenient to define an
objective whose derivative is the gradient estimator. Then
the automatic-differentiation (auto-diff) toolbox, as imple-
mented in deep learning libraries, can easily compute the
gradient estimates with respect to all upstream parameters.

This is the method used by the surrogate loss (SL) ap-
proach (Schulman et al., 2015), which provides a recipe
for building a surrogate objective from a stochastic compu-
tation graph (SCG). When differentiated, the SL yields an
estimator for the first order gradient of the original objective.

However, estimating higher order derivatives is more chal-
lenging. Such estimators are useful for a number of opti-
mization techniques, accelerating convergence in supervised
settings (Dennis & Moré, 1977) and reinforcement learn-
ing (Furmston et al., 2016). Furthermore, they are vital for
gradient-based meta-learning (Finn et al., 2017; Al-Shedivat
et al., 2017; Li et al., 2017), which differentiates an objec-
tive after some number of first order learning steps. Estima-
tors of higher order derivatives have also proven useful in
multi-agent learning (Foerster et al., 2018), when one agent
differentiates through the learning process of another agent.

Unfortunately, the first order gradient estimators mentioned
above are fundamentally ill suited to calculating higher or-
der derivatives via auto-diff. Due to the dependency on the
sampling distribution, estimators of higher order derivatives
require repeated application of the score function trick. Sim-
ply differentiating the first order estimator again, as was for
example done by Finn et al. (2017), leads to missing terms.

To obtain higher order score function estimators, there are
currently two unsatisfactory options. The first is to ana-
lytically derive and implement the estimators. However,
this is laborious, error prone, and does not comply with the
auto-diff paradigm. The second is to repeatedly apply the
SL approach to construct new objectives for each further
derivative estimate. However, each of these new objectives
involves increasingly complex graph manipulations, defeat-
ing the purpose of a differentiable surrogate loss.

Moreover, to match the first order gradient after a single
differentiation, the SL treats part of the cost as a fixed sam-
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ple, severing the dependency on the parameters. We show
that this yields missing and incorrect terms in estimators of
higher order derivatives. We believe that these difficulties
have limited the usage and exploration of higher order meth-
ods in reinforcement learning tasks and other application
areas that may be formulated as SCGs.

Therefore, we propose a novel technique, the Infinitely
Differentiable Monte-Carlo Estimator (DICE), to address
all these shortcomings. DICE constructs a single objective
that evaluates to an estimate of the original objective, but can
also be differentiated repeatedly to obtain correct estimators
of derivatives of any order. Unlike the SL approach, DICE
relies on auto-diff as implemented for instance in Tensor-
Flow (Abadi et al., 2016) or PyTorch (Paszke et al., 2017)
to automatically perform the complex graph manipulations
required for these estimators of higher order derivatives.

DICE uses a novel operator, MAGICBOX ( ), that acts on
the set of those stochastic nodesWc that influence each of
the original losses in an SCG. Upon differentiation, this
operator generates the correct derivatives associated with
the sampling distribution:

∇θ (Wc) = (Wc)∇θ
∑

w∈Wc

log(p(w; θ)),

while returning 1 when evaluated: (W) � 1. The
MAGICBOX-operator can easily be implemented in stan-
dard deep learning libraries as follows:

(W) = exp
(
τ −⊥(τ)

)
,

τ =
∑
w∈W

log(p(w; θ)),

where ⊥ is an operator that sets the gradient of the operand
to zero, so∇x⊥(x) = 0. In addition, we show how to use a
baseline for variance reduction in our formulation.

We verify the correctness of DICE both through a proof
and through numerical evaluation of the DICE gradient
estimates. To demonstrate the utility of DICE, we also
propose a novel approach for learning with opponent learn-
ing awareness (Foerster et al., 2018). We also open-source
our code in TensorFlow. We hope this powerful and con-
venient novel objective will unlock further exploration and
adoption of higher order learning methods in meta-learning,
reinforcement learning, and other applications of SCGs.
Already, DICE is used to implement repeatedly differen-
tiable gradient estimators with pyro.infer.util.Dice and ten-
sorflow probability.python.monte carlo.expectation.

2. Background
Suppose x is a random variable, x ∼ p(x; θ), f is a function
of x and we want to compute ∇θEx [f(x)]. If the analyt-
ical gradients ∇θf are unavailable or nonexistent, we can

employ the score function (SF) estimator (Fu, 2006):

∇θEx [f(x)] = Ex [f(x)∇θ log(p(x; θ))] (2.1)

If instead x is a deterministic function of θ and another ran-
dom variable z, the operators∇θ and Ez commute, yielding
the pathwise derivative estimator or reparameterisation
trick (Kingma & Welling, 2013). In this work, we focus
on the SF estimator, which can capture the interdependency
of both the objective and the sampling distribution on the
parameters θ, and therefore requires careful handling for
estimators of higher order derivatives.1

2.1. Stochastic Computation Graphs

Gradient estimators for single random variables can be gen-
eralised using the formalism of a stochastic computation
graph (SCG, Schulman et al., 2015). An SCG is a directed
acyclic graph with four types of nodes: input nodes, Θ;
deterministic nodes, D; cost nodes, C; and stochastic nodes,
S. Input nodes are set externally and can hold parameters
we seek to optimise. Deterministic nodes are functions of
their parent nodes, while stochastic nodes are distributions
conditioned on their parent nodes. The set of cost nodes C
are those associated with an objective L = E[

∑
c∈C c].

Let v ≺ w denote that node v influences node w, i.e., there
exists a path in the graph from v to w. If every node along
the path is deterministic, v influences w deterministically
which is denoted by v ≺D w. See Figure 1 (top) for a
simple SCG with an input node θ, a stochastic node x and a
cost function f . Note that θ influences f deterministically
(θ ≺D f ) as well as stochastically via x (θ ≺ f ).

2.2. Surrogate Losses

In order to estimate gradients of a sum of cost nodes,∑
c∈C c, in an arbitrary SCG, Schulman et al. (2015) in-

troduce the notion of a surrogate loss (SL):

SL(Θ,S) :=
∑
w∈S

log p(w | DEPSw)Q̂w +
∑
c∈C

c(DEPSc).

Here DEPSw are the ‘dependencies’ of w: the set of stochas-
tic or input nodes that deterministically influence the node
w. Furthermore, Q̂w is the sum of sampled costs ĉ corre-
sponding to the cost nodes influenced by w.

The hat notation on Q̂w indicates that inside the SL, these
costs are treated as fixed samples. This severs the functional
dependency on θ that was present in the original stochastic
computation graph.

The SL produces a gradient estimator when differentiated
once (Schulman et al., 2015, Corollary 1):

∇θL = E[∇θSL(Θ,S)]. (2.2)

1In the following, we use the terms ‘gradient’ and ‘derivative’
interchangeably.
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Note that the use of sampled costs Q̂w in the definition of
the SL ensures that its first order gradients match the score
function estimator, which does not contain a term of the
form log(p)∇θQ.

Although Schulman et al. (2015) focus on first order gradi-
ents, they argue that the SL gradient estimates themselves
can be treated as costs in an SCG and that the SL approach
can be applied repeatedly to construct higher order gradient
estimators. However, the use of sampled costs in the SL
leads to missing dependencies and wrong estimates when
calculating such higher order gradients, as we discuss in
Section 3.2.

3. Higher Order Derivatives
In this section, we illustrate how to estimate higher order
derivatives via repeated application of the score function
(SF) trick and show that repeated application of the surrogate
loss (SL) approach in stochastic computation graphs (SCGs)
fails to capture all of the relevant terms for higher order
gradient estimates.

3.1. Estimators of Higher Order Derivatives

We begin by revisiting the derivation of the score function
estimator for the gradient of the expectation L of f(x; θ)
over x ∼ p(x; θ):

∇θL = ∇θEx [f(x; θ)]

= ∇θ
∑
x

p(x; θ)f(x; θ)

=
∑
x

∇θ
(
p(x; θ)f(x; θ)

)
=
∑
x

(
f(x; θ)∇θp(x; θ) + p(x; θ)∇θf(x; θ)

)
=
∑
x

(
f(x; θ)p(x; θ)∇θ log(p(x; θ))

+ p(x; θ)∇θf(x; θ)
)

= Ex [f(x; θ)∇θ log(p(x; θ)) +∇θf(x; θ)] (3.1)
= Ex[g(x; θ)].

The estimator g(x; θ) of the gradient of Ex [f(x; θ)] consists
of two distinct terms: (1) the term f(x; θ)∇θ log(p(x; θ))
originating from f(x; θ)∇θp(x; θ) via the SF trick, and (2)
the term∇θf(x; θ), due to the direct dependence of f on θ.
The second term is often ignored because f is often only a
function of x but not of θ. However, even in that case, the
gradient estimator g depends on both x and θ. We might be
tempted to again apply the SL approach to∇θEx[g(x; θ)] to
produce estimates of higher order gradients of L, but below
we demonstrate that this fails. In Section 4, we introduce
a practical algorithm for correctly producing such higher
order gradient estimators in SCGs.

Stochastic Computation Graph

θ x f

∇θL

∇2
θL

∇n
θL

Surrogate Loss Approach

θ x f

log(p(x; θ))f̂ + f gSL = f̂∇θ log(p(x; θ)) +∇θf

log(p(x; θ))ĝSL +

f̂∇θ log(p(x; θ)) +∇θf
ĝSL∇θ log(p(x; θ)) +

f̂∇2
θ log(p(x; θ)) +

∇θf̂∇θ log(p(x; θ)) +∇2
θf

∇

∇

= 0

DICE

θ x f (x)f

∇θ( (x)f)

∇2
θ( (x)f)

∇nθ ( (x)f)

∇

∇

· · ·
∇

Figure 1. Simple example illustrating the difference of the Surro-
gate Loss (SL) approach to DICE. Stochastic nodes are depicted in
orange, costs in gray, surrogate losses in blue, DICE in purple, and
gradient estimators in red. Note that for second-order gradients, SL
requires the construction of an intermediate stochastic computation
graph and due to taking a sample of the cost ĝSL, the dependency
on θ is lost, leading to an incorrect second-order gradient estimator.
Arrows from θ, x and f to gradient estimators omitted for clarity.

3.2. Higher Order Surrogate Losses

While Schulman et al. (2015) focus on first order gradients,
they state that a recursive application of SL can generate
higher order gradient estimators. However, as we demon-
strate in this section, because the SL approach treats part
of the objective as a sampled cost, the corresponding terms
lose a functional dependency on the sampling distribution.
This leads to missing terms in the estimators of higher order
gradients.

Consider the following example, where a single parameter
θ defines a sampling distribution p(x; θ) and the objective
is f(x, θ).

SL(L) = log p(x; θ)f̂(x) + f(x; θ)

(∇θL)SL = Ex[∇θSL(L)]

= Ex[f̂(x)∇θ log p(x; θ) +∇θf(x; θ)] (3.2)
= Ex[gSL(x; θ)].

The corresponding SCG is depicted at the top of Figure 1.
Comparing (3.1) and (3.2), note that the first term, f̂(x) has
lost its functional dependency on θ, as indicated by the hat
notation and the lack of a θ argument. While these terms
evaluate to the same estimate of the first order gradient, the
lack of the dependency yields a discrepancy between the
exact derivation of the second order gradient and a second
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application of SL:

SL(gSL(x; θ)) = log p(x; θ)ĝSL(x) + gSL(x; θ)

(∇2
θL)SL = Ex[∇θSL(gSL)]

= Ex[ĝSL(x)∇θ log p(x; θ) +∇θgSL(x; θ)].
(3.3)

By contrast, the exact derivation of ∇2
θL results in the fol-

lowing expression:

∇2
θL = ∇θEx[g(x; θ)]

= Ex[g(x; θ)∇θ log p(x; θ) +∇θg(x; θ)]. (3.4)

Since gSL(x; θ) differs from g(x; θ) only in its dependencies
on θ, gSL and g are identical when evaluated. However, due
to the missing dependencies in gSL, the gradients w.r.t. θ,
which appear in the higher order gradient estimates in (3.3)
and (3.4), differ:

∇θg(x; θ) = ∇θf(x; θ)∇θ log(p(x; θ))

+ f(x; θ)∇2
θ log(p(x; θ))

+∇2
θf(x; θ),

∇θgSL(x; θ) = f̂(x)∇2
θ log(p(x; θ))

+∇2
θf(x; θ).

We lose the term ∇θf(x; θ)∇θ log(p(x; θ)) in the second
order SL gradient because ∇θf̂(x) = 0 (see left part of
Figure 1). This issue occurs immediately in the second
order gradients when f depends directly on θ. However, as
g(x; θ) always depends on θ, the SL approach always fails
to produce correct third or higher order gradient estimates
even if f depends only indirectly on θ.

3.3. Example

Here is a toy example to illustrate a possible failure case.
Let x ∼ Ber(θ) and f(x, θ) = x(1− θ) + (1− x)(1 + θ).
For this simple example we can exactly evaluate all terms:

L = θ(1− θ) + (1− θ)(1 + θ)

∇θL = −4θ + 1

∇2
θL = −4

Evaluating the expectations for the SL gradient estimators
analytically results in the following terms, with an incorrect
second-order estimate:

(∇θL)SL = −4θ + 1

(∇2
θL)SL = −2

If, for example, the Newton-Raphson method was used to
optimise L, the solution could be found in a single iteration

with the correct Hessian. In contrast, the wrong estimates
from the SL approach would require damping to approach
the optimum at all, and many more iterations would be
needed.

The failure mode seen in this toy example appears whenever
the objective includes a regularisation term that depends
on θ, and is also impacted by the stochastic samples. One
example in a practical algorithm is soft Q-learning for RL
(Schulman et al., 2017), which regularises the policy by
adding an entropy penalty to the rewards. This penalty en-
courages the agent to maintain an exploratory policy, reduc-
ing the probability of getting stuck in local optima. Clearly
the penalty depends on the policy parameters θ. However,
the policy entropy also depends on the states visited, which
in turn depend on the stochastically sampled actions. As
a result, the entropy regularised RL objective in this algo-
rithm has the exact property leading to the failure of the SL
approach shown above. Unlike our toy analytic example,
the consequent errors do not just appear as a rescaling of the
proper higher order gradients, but depend in a complex way
on the parameters θ. Any second order methods with such
a regularised objective therefore requires an alternate strat-
egy for generating gradient estimators, even setting aside
the awkwardness of repeatedly generating new surrogate
objectives.

4. Correct Gradient Estimators with DiCE
In this section, we propose the Infinitely Differentiable
Monte-Carlo Estimator (DICE), a practical algorithm for
programatically generating correct gradients of any order
in arbitrary SCGs. The naive option is to recursively ap-
ply the update rules in (3.1) that map from f(x; θ) to the
estimator of its derivative g(x; θ). However, this approach
has two deficiencies. First, by defining gradients directly,
it fails to provide an objective that can be used in stan-
dard deep learning libraries. Second, these naive gradient
estimators violate the auto-diff paradigm for generating fur-
ther estimators by repeated differentiation since in general
∇θf(x; θ) 6= g(x; θ). Our approach addresses these issues,
as well as fixing the missing terms from the SL approach.

As before, L = E[
∑
c∈C c] is the objective in an SCG. The

correct expression for a gradient estimator that preserves all
required dependencies for further differentiation is:

∇θL = E

[∑
c∈C

(
c
∑
w∈Wc

∇θ log p(w | DEPSw)

+∇θc(DEPSc)

)]
, (4.1)

whereWc = {w | w ∈ S, w ≺ c, θ ≺ w}, i.e., the set of
stochastic nodes that depend on θ and influence the cost c.
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For brevity, from here on we suppress the DEPS notation,
assuming all probabilities and costs are conditioned on their
relevant ancestors in the SCG.

Note that (4.1) is the generalisation of (3.1) to arbitrary
SCGs. The proof is given by Schulman et al. (2015, Lines
1-10, Appendix A). Crucially, in Line 11 the authors then
replace c by ĉ, severing the dependencies required for cor-
rect higher order gradient estimators. As described in Sec-
tion 2.2, this was done so that the SL approach reproduces
the score function estimator after a single differentiation
and can thus be used as an objective for backpropagation in
a deep learning library.

To support correct higher order gradient estimators, we
propose DICE, which relies heavily on a novel operator,
MAGICBOX ( ). MAGICBOX takes a set of stochastic
nodesW as input and has the following two properties by
design:

1. (W) � 1,

2. ∇θ (W) = (W)
∑
w∈W ∇θ log(p(w; θ)).

Here, � indicates “evaluates to” in contrast to full equality,
=, which includes equality of all gradients. In the auto-
diff paradigm, � corresponds to a forward pass evaluation
of a term. Meanwhile, the behaviour under differentiation
in property (2) indicates the new graph nodes that will be
constructed to hold the gradients of that object. Note that
that (W) reproduces the dependency of the gradient on
the sampling distribution under differentiation through the
requirements above. Using , we can next define the DICE
objective, L :

L =
∑
c∈C

(Wc)c. (4.2)

Below we prove that the DICE objective indeed produces
correct arbitrary order gradient estimators under differentia-
tion.

Theorem 1. E[∇nθL ] � ∇nθL,∀n ∈ {0, 1, 2, . . . }.

Proof. For each cost node c ∈ C, we define a sequence of
nodes, cn, n ∈ {0, 1, . . . } as follows:

c0 = c,

E[cn+1] = ∇θE[cn]. (4.3)

By induction it follows that E[cn] = ∇nθE[c] ∀n, i.e., cn

is an estimator of the nth order derivative of the objective
E[c].

We further define cn = cn (Wcn). Since (x) � 1,
clearly cn � cn. Therefore E[cn] � E[cn] = ∇nθE[c],
i.e., cn is also a valid estimator of the nth order derivative

of the objective. Next, we show that cn can be generated
by differentiating c0 n times. This follows by induction, if
∇θcn = cn+1, which we prove as follows:

∇θcn = ∇θ(cn (Wcn))

= cn∇θ (Wcn) + (Wcn)∇θcn

= cn (Wcn)

 ∑
w∈Wcn

∇θ log(p(w; θ))


+ (Wcn)∇θcn

= (Wcn)

∇θcn + cn
∑

w∈Wcn

∇θ log(p(w; θ))


(4.4)

= (Wcn+1)cn+1 = cn+1. (4.5)

To proceed from (4.4) to (4.5), we need two additional
steps. First, we require an expression for cn+1. Substi-
tuting L = E[cn] into (4.1) and comparing to (4.3), we find
the following map from cn to cn+1:

cn+1 = ∇θcn + cn
∑

w∈Wcn

∇θ log p(w; θ). (4.6)

The term inside the brackets in (4.4) is identical to cn+1.
Secondly, note that (4.6) shows that cn+1 depends only
on cn and Wcn . Therefore, the stochastic nodes which
influence cn+1 are the same as those which influence cn. So
Wcn =Wcn+1 , and we arrive at (4.5).

To conclude the proof, recall that cn is the estimator for the
nth derivative of c, and that cn � cn. Summing over c ∈ C
then gives the desired result.

Implementation of DICE. DICE is easy to implement in
standard deep learning libraries 2:

(W) = exp
(
τ −⊥(τ)

)
,

τ =
∑
w∈W

log(p(w; θ)),

where ⊥ is an operator that sets the gradient of the operand
to zero, so ∇x⊥(x) = 0.3

Since ⊥(x) � x, clearly (W) � 1. Furthermore:

∇θ (W) = ∇θ exp
(
τ −⊥(τ)

)
= exp

(
τ −⊥(τ)

)
∇θ(τ −⊥(τ))

= (W)(∇θτ + 0)

= (W)
∑
w∈W

∇θ log(p(w; θ)).

2A previous version of tf.contrib.bayesflow authored by Josh
Dillon also used this implementation trick.

3This operator exists in PyTorch as detach and in TensorFlow
as stop gradient.
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With this implementation of the -operator, it is now
straightforward to construct L as defined in (4.7). This
procedure is demonstrated in Figure 2, which shows a re-
inforcement learning use case. In this example, the cost
nodes are rewards that depend on stochastic actions, and
the total objective is J = E[

∑
rt]. We construct a DICE

objective J =
∑
t ({at′ , t′ ≤ t})rt. Now E[J ] � J

and E[∇nθJ ] � ∇nθJ , so J can both be used to estimate
the return and to produce estimators for any order gradients
under auto-diff, which can be used for higher order methods.

Note that DICE can be equivalently expressed with
(W) = p̃/⊥(p̃), p̃ =

∑
w∈W p(w; θ). We use the expo-

nentiated form to emphasise the generator-like functionality
of the operator and to ensure numerical stability.

Causality. The SL approach handles causality by sum-
ming over stochastic nodes,w, and multiplying∇ log(p(w))
for each stochastic node with a sum of the downstream
costs, Q̂w. In contrast, the DICE objective sums over
costs, c, and multiplies each cost with a sum over the gra-
dients of log-probabilities from upstream stochastic nodes,∑
w∈Wc

∇ log(p(w)).

In both cases, integrating causality into the gradient esti-
mator leads to reduction of variance compared to the naive
approach of multiplying the full sum over costs with the full
sum over grad-log-probabilities.

However, the second formulation leads to greatly reduced
conceptual complexity when calculating higher order terms,
which we exploit in the definition of the DICE objective.
This is because each further gradient estimator maintains
the same backward looking dependencies for each term in
the original sum over costs, i.e.,Wcn =Wcn+1 . In contrast,
the SL approach is centred around the stochastic nodes,
which each become associated with a growing number of
downstream costs after each differentiation. Consequently,
we believe that our DICE objective is more intuitive, as it
is conceptually centred around the original objective and
remains so under repeated differentiation.

Variance Reduction. We can include a baseline term in the
definition of the DICE objective:

L =
∑
c∈C

(Wc)c+
∑
w∈S

(1− ({w}))bw. (4.7)

The baseline bw is a design choice and can be any function
of nodes not influenced by w. As long as this condition
is met, the baseline does not change the expectation of the
gradient estimates, but can considerably reduce the variance.
A common choice is the average cost.

Since (1− ({w})) � 0, this implementation of the base-
line leaves the evaluation of the estimator L of the original
objective unchanged,

Hessian-Vector Product. The Hessian-vector, v>H , is

s1 s2 st· · ·

a1 a2 at· · ·

r1 r2 rt· · ·

θ

(a1)r1 (a1, a2)r2 (a1, . . . , at)rt· · ·

∇nθ (a1)r1 ∇nθ (a1, a2)r2 ∇nθ (a1, . . . , at)rt· · ·

∇n ∇n ∇n

Figure 2. DICE applied to a reinforcement learning problem. A
stochastic policy conditioned on st and θ produces actions, at,
which lead to rewards rt and next states, st+1. Associated with
each reward is a DICE objective that takes as input the set of
all causal dependencies that are functions of θ, i.e., the actions.
Arrows from θ, ai and ri to gradient estimators omitted for clarity.

useful for a number of algorithms, such as estimation of
eigenvectors and eigenvalues of H (Pearlmutter, 1994). Us-
ing DICE, v>H can be implemented efficiently without
having to compute the full Hessian. Assuming v does not
depend on θ and using > to indicate the transpose:

v>H = v>∇2L
= v>(∇>∇L )

= ∇>(v>∇L ).

In particular, (v>∇L ) is a scalar, making this implementa-
tion well suited for auto-diff.

5. Case Studies
While the main contribution of this paper is to provide a
novel general approach for any order gradient estimation in
SCGs, we also provide a proof-of-concept empirical eval-
uation for a set of case studies, carried out on the iterated
prisoner’s dilemma (IPD). In IPD, two agents iteratively
play matrix games with two possible actions: (C)ooperate
and (D)efect. The possible outcomes of each game are DD,
DC, CD, CC with the corresponding first agent payoffs, -2,
0, -3, -1, respectively. This setting is useful because (1) it
has a nontrivial but analytically calculable value function,
allowing for verification of gradient estimates, and (2) dif-
ferentiating through the learning steps of other agents in
multi-agent RL is a highly relevant application of higher
order policy gradient estimators in RL (Foerster et al., 2018).

Empirical Verification. We first verify that DICE recovers
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Figure 3. For the iterated prisoner’s dilemma, shown is the flat-
tened true (red) and estimated (green) gradient (left) and Hessian
(right) using the first and second derivative of DICE and the exact
value function respectively. The correlation coefficients are 0.999
for the gradients and 0.97 for the Hessian; the sample size is 100k.

gradients and Hessians in stochastic computation graphs.
To do so, we use DICE to estimate gradients and Hessians
of the expected return for fixed policies in IPD.

As shown in Figure 3, we find that indeed the DICE estima-
tor matches both the gradients (a) and the Hessians (b) for
both agents accurately. Furthermore, Figure 4 shows how
the estimate of the gradient improve as the value function
becomes more accurate during training, in (a). Also shown
is the quality of the gradient estimation as a function of
sample size with and without a baseline, in (b). Both plots
show that the baseline is a key component of DICE for
accurate estimation of gradients.

DICE for multi-agent RL. In learning with opponent-
learning awareness (LOLA), Foerster et al. (2018) show that
agents that differentiate through the learning step of their
opponent converge to Nash equilibria with higher social
welfare in the IPD.

Since the standard policy gradient learning step for one
agent has no dependency on the parameters of the other
agent (which it treats as part of the environment), LOLA
relies on a Taylor expansion of the expected return in com-
bination with an analytical derivation of the second order
gradients to be able to differentiate through the expected
return after the opponent’s learning step.

Here, we take a more direct approach, made possible by
DICE. Let πθ1 be the policy of the LOLA agent and let πθ2
be the policy of its opponent and vice versa. Assuming that
the opponent learns using policy gradients, LOLA-DICE
agents learn by directly optimising the following stochastic
objective w.r.t. θ1:

L1(θ1, θ2)LOLA = Eπθ1 ,πθ2+∆θ2(θ1,θ2)

[
L1
]
,where

∆θ2(θ1, θ2) = α2∇θ2Eπθ1 ,πθ2
[
L2
]
,

(5.1)

where α2 is a scalar step size and Li =
∑T
t=0 γ

trit is the
sum of discounted returns for agent i.

To evaluate these terms directly, our variant of LOLA un-
rolls the learning process of the opponent, which is func-

Figure 4. Shown in (a) is the correlation of the gradient estimator
(averaged across agents) as a function of the estimation error of the
baseline when using a sample size of 128 and in (b) as a function
of sample size when using a converged baseline (in blue) and no
baseline (in green) for gradients and in red for Hessian. Errors bars
indicate standard deviation on both plots.

tionally similar to model-agnostic meta-learning (MAML,
Finn et al., 2017). In the MAML formulation, the gradient
update of the opponent, ∆θ2, corresponds to the inner loop
(typically the training objective) and the gradient update of
the agent itself to the outer loop (typically the test objective).
Algorithm 1 describes the procedure we use to compute
updates for the agent’s parameters.

Using the following DICE-objective to estimate gradient
steps for agent i, we are able to preserve all dependencies:

Li (θ1,θ2) =
∑
t

({
at

′≤t
j∈{1,2}

})
γtrit, (5.2)

where
{
at

′≤t
j∈{1,2}

}
is the set of all actions taken by both

agents up to time t. To save computation, we cache the ∆θi
of the inner loop when unrolling the outer loop policies in
order to avoid recalculating them at every time step.

Algorithm 1 LOLA-DiCE: policy gradient update for θ1
input Policy parameters of the agent, θ1, and of the opponent, θ2
1: Initialize: θ′2 ← θ2
2: for k in 1 . . .K do // inner loop lookahead steps
3: Rollout trajectories τk under (πθ1 , πθ′2)
4: Update: θ′2 ← θ′2 + α2∇θ′2L

2
(θ1,θ

′
2)

// lookahead update
5: end for
6: Rollout trajectories τ under (πθ1 , πθ′2).
7: Update: θ′1 ← θ1 + α1∇θ1L1

(θ1,θ
′
2)

// PG update
output θ′1.

Using DICE, differentiating through ∆θ2 produces the cor-
rect higher order gradients, which is critical for LOLA.
By contrast, simply differentiating through the SL-based
first order gradient estimator multiple times, as was done
for MAML (Finn et al., 2017), results in omitted gradient
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Figure 5. Joint average per step returns for different training meth-
ods. Comparing Naive Learning with the original LOLA algo-
rithm and LOLA-DiCE with a varying number of look-ahead steps.
Shaded areas represent the 95% confidence intervals based on 5
runs. All agents used batches of size 64, which is more than 60
times smaller than the size required in the original LOLA paper.

terms and a biased gradient estimator, as pointed out by
Al-Shedivat et al. (2017) and Stadie et al. (2018).

Figure 5 shows a comparison between the LOLA-DICE
agents and the original formulation of LOLA. In our exper-
iments, we use a time horizon of 150 steps and a reduced
batch size of 64; the lookahead gradient step, α, is set to 1
and the learning rate is 0.3. Importantly, given the approxi-
mation used, the LOLA method was restricted to a single
step of opponent learning. In contrast, using DICE we can
unroll and differentiate through an arbitrary number of the
opponent learning steps.

The original LOLA implemented via second order gradient
corrections shows no stable learning, as it requires much
larger batch sizes (∼4000). By contrast, LOLA-DICE
agents discover strategies of high social welfare, replicating
the results of the original LOLA paper in a way that is both
more direct, efficient and establishes a common formulation
between MAML and LOLA.

6. Related Work
Gradient estimation is well studied, although many methods
have been named and explored independently in different
fields, and the primary focus has been on first order gradi-
ents. Fu (2006) provides an overview of methods from the
point of view of simulation optimization.

The score function (SF) estimator, also referred to as the
likelihood ratio estimator or REINFORCE, has received con-
siderable attention in many fields. In reinforcement learn-
ing, policy gradient methods (Williams, 1992) have proven

highly successful, especially when combined with variance
reduction techniques (Weaver & Tao, 2001; Grondman et al.,
2012). The SF estimator has also been used in the analysis
of stochastic systems (Glynn, 1990), as well as for varia-
tional inference (Wingate & Weber, 2013; Ranganath et al.,
2014). Kingma & Welling (2013) and Rezende et al. (2014)
discuss Monte-Carlo gradient estimates in the case where
the stochastic parts of a model can be reparameterised.

These approaches are formalised for arbitrary computation
graphs by Schulman et al. (2015), but to our knowledge our
paper is the first to present a practical and correct approach
for generating higher order gradient estimators utilising
auto-diff. To easily make use of these estimates for opti-
mising neural network models, automatic differentiation for
backpropagation has been widely used (Baydin et al., 2015).

One rapidly growing application area for such higher order
gradient estimates is meta-learning for reinforcement learn-
ing. Finn et al. (2017) compute a loss after a number of
policy gradient learning steps, differentiating through the
learning step to find parameters that can be quickly fine-
tuned for different tasks. Li et al. (2017) extend this work
to also meta-learn the fine-tuning step direction and mag-
nitude. Al-Shedivat et al. (2017) and Stadie et al. (2018)
derive the proper higher order gradient estimators for their
work by reapplying the score function trick. Foerster et al.
(2018) use a multi-agent version of the same higher order
gradient estimators in combination with a Taylor expansion
of the expected return. None present a general strategy for
constructing higher order gradient estimators for arbitrary
stochastic computation graphs.

7. Conclusion
We presented DICE, a general method for computing any
order gradient estimators for stochastic computation graphs.
DICE resolves the deficiencies of current approaches for
computing higher order gradient estimators: analytical cal-
culation is error-prone and incompatible with auto-diff,
while repeated application of the surrogate loss approach
is cumbersome and, as we show, leads to incorrect esti-
mators in many cases. We prove the correctness of DICE
estimators, introduce a simple practical implementation of
DICE for use in deep learning frameworks, and validate
its correctness and utility in a multi-agent reinforcement
learning problem. We believe DICE will unlock further
exploration and adoption of higher order learning methods
in meta-learning, reinforcement learning, and other applica-
tions of stochastic computation graphs. As a next step we
will extend and improve the variance reduction of DICE
in order to provide a simple end-to-end solution for higher
order gradient estimation. In particular we hope to include
solutions such as REBAR (Tucker et al., 2017) in the DICE
operator.
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