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Abstract

Building agents that can explore their environments intelligently is a challenging
open problem. In this paper, we make a step towards understanding how a hierar-
chical design of the agent’s policy can affect its exploration capabilities. First, we
design EscapeRoom environments, where the agent must figure out how to navi-
gate to the exit by accomplishing a number of intermediate tasks (subgoals), such
as finding keys or opening doors. Our environments are procedurally generated
and vary in complexity, which can be controlled by the number of subgoals and
relationships between them. Next, we propose to measure the complexity of each
environment by constructing dependency graphs between the goals and analytically
computing hitting times of a random walk in the graph. We empirically evaluate
Proximal Policy Optimization (PPO) with sparse and shaped rewards, a variation of
policy sketches, and a hierarchical version of PPO (called HiPPO) akin to h-DQN.
We show that analytically estimated hitting time in goal dependency graphs is an
informative metric of the environment complexity. We conjecture that the result
should hold for environments other than navigation. Finally, we show that solving
environments beyond certain level of complexity requires hierarchical approaches.

1 Introduction

Deep reinforcement learning research has led us to discover general-purpose algorithms for learning
how to control robots [1] and solve games [2, 3], surpassing human abilities. These results indicate a
significant progress in the field. However, building agents capable of intelligent exploration even in
simple environments is still an unreached milestone.

To make progress towards this goal, first we need to understand and be able to measure when
exploration is necessary. For instance, while Atari games seem like a challenging benchmark, it turns
out that having a memoryless reactive policy is often sufficient for solving most of these games [4].
On the other hand, there are environments (e.g., Montezuma’s Revenge) that can only be solved
by achieving some intermediate goals (subgoals). Learning about the dependencies between the
subgoals requires executing a consistent exploration strategy, reasoning, and multi-step planning,
beyond vanilla deep RL methods.

Broadly, exploration is a mechanism used by an agent to reduce uncertainty about its environment
(i.e., rewards and state transitions). Notable approaches to exploration include: (1) count-based and
intrinsic motivation methods [5], where the agent (approximately) quantifies uncertainty of the states
and actions and tends to visit the states it is least certain about; and (2) various policy-perturbation
heuristics, such as ε-greedy, Boltzmann, and parameter-noise methods [6, 7]. All these approaches
function on the level of atomic actions and hence are limited when it comes to complex structured
tasks with delayed and sparse rewards. To overcome such limitations, it is possible to use the
framework of temporal abstractions (options) [8, 9]. In particular, Kulkarni et al. [10] argued for
hierarchical methods that enable exploration in the space of goals, which is also our focus.
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In this paper, we aim to understand and measure the complexity of exploration in environments with
multiple dependent subgoals, and the effects of hierarchical design of the agent’s policy in such
environments. To do so, we introduce a collection of procedurally generated, simple grid-world
environments called EscapeRooms (Table 1). We represent the goal space with dependency graphs,
and propose to measure complexity of exploration as the time it takes a random walk in this abstract
space to reach the final goal state from the start state in expectation (i.e., the hitting time). This
measure captures a simple intuition: the more complex the goal dependencies are, the more time it
would take the agent to explore how to solve the environment.

To verify that the hitting time is a useful measure of complexity in RL scenarios, we train a few
hierarchical and non-hierarchical policies using methods based on proximal policy optimization [PPO,
11] on EscapeRooms and measure their exploration capabilities. We use metrics such as success rate
and the number of timesteps it takes the agent to achieve each goal. Our results demonstrate that
information about the goals is crucial to enable learning in our environments. Moreover, we show
that our complexity measure correlates with the performance of the policies—agents perform worse
and hierarchy becomes more important in environments with higher exploration complexity.

2 Methods

Given an environment, we would like to quantify how much exploration is needed to solve the task. In
this section, we introduce the notion of goal-dependency graphs, describe EscapeRoom environments,
and compute different measures of the exploration complexity for these environments.

2.1 Goal-dependency graphs & exploration complexity

We are interested in a scenario where the agent can achieve the final goal only after having accom-
plished a number of intermediate goals. Assuming that the goals and dependencies are given, we
can construct a graph G(V,E) with nodes V representing the goals and edges E representing the
relationships between the goals. From this perspective, we can treat the agent executing a (stochastic)
policy in an environment with these subgoals as a random walk on the corresponding goal-dependency
graph. To measure complexity of exploration in the given environment, we introduce the following
notation. Let n be the number of nodes in the graph, and W ∈ Rn×n the adjacency matrix of the
graph weighted by the probabilities of transition from one goal to the other (according to the policy π
executed by the agent). Let D ∈ Rn×n be the corresponding diagonal weighted degree matrix:

Dii :=

n∑
j=1

Wij , Dij := 0, ∀i 6= j

Now, we can use the graph Laplacian, L :=W −D, to compute the expected time it would take the
random walk to reach a given goal node with index t from the initial node with index s in the graph
for the first time (also known as the hitting time) [12]. To do so, we can solve the following linear
system (subscripts denote indices):

Lx = b s.t. xt = 0, (1)
where bs = 1, bt = −1, bk = 0 ∀k /∈ {s, t}

where x, b ∈ Rn. The solution, x?s , will be the hitting time from s to t. Solving (1) for each goal in
the graph allows us to analytically compute different statistics for any goal-dependency graph under a
given random walk, e.g., the expected number of states reachable under a given time limit.

2.2 EscapeRoom environments

We design a set of grid-world environments (Table 1) where the agent must pick up keys and open
locked doors (i.e., accomplish intermediate goals) in order to reach the exit (the final goal). The agent
has 5 actions: move-forward, turn-left, turn-right, pick-up (key), and open (door). The
pick-up action only succeeds if the key is in front of the agent. The open action only succeeds if a
locked door is in front of the agent and the agent has already picked up a key of the same color as
the door. Upon arriving at the exit, the agent receives a reward of 1 and the episode terminates. Our
EscapeRoom environments are based on Gym MiniGrid [13] and follow the OpenAI Gym API [14].
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Table 1: EscapeRoom environments. On the right, we
enumerate all possible dependency graphs (up to a per-
mutation of colors) for environments with two rooms
(a), three rooms (b, c), and four rooms (d, e, f ,g). Each
node in the dependency graph can be traversed at most
once (i.e., no cyclic paths are allowed). The agent (red
triangle) must pick up keys and open locked doors in
order to reach the exit (green square). Each door can
only be opened by a key of the corresponding color.

Goal dependency graphs Environment

(a)
start key door exit

Sample environment (a)

(b)
start

key door

exit

(c)

Sample environment (b)

(g)

(f)

(d)
start

key door exit

(e)

Sample environment (f)

In each episode, we procedurally generate a new
environment; the object locations, colors of the
keys and doors, and the room layouts are all ran-
domized. The agent always begins at a random
cell in the center room, which branches out to 1-3
other rooms, one of which contains the exit. Each
of the branching rooms is initially blocked by a
locked door, so an environment with n rooms has
exactly n− 1 keys and doors. Each open cell can
contain up to one of 3 object types (Exit, Key,
or Door) with one of 6 possible colors. The en-
vironment is partially observable, meaning that
the agent can only observe its local surroundings
and cannot see through walls. In our experiments,
each observation is a 7× 7× 3 array representing
the 7×7 view in front of the agent with three chan-
nels (object IDs, color IDs, and a binary matrix
capturing whether a door is open).

Goal dependencies in EscapeRooms. In Table 1,
we enumerate all possible goal dependency graphs
for different EscapeRoom environments with up
to 4 rooms. Each goal is represented as one-hot
encodings of (color, object); for example, (yellow
key) means to pick up the yellow key, and (blue
door) means to open the blue door. To understand
how complex each environment is from the stand
point of exploration in the goal space, we com-
pute the hitting time (HT) for each graph (Table 2).
Note that dependency graphs in Table 1 are sim-
plified for illustration purposes (each goal node
is assumed to be visited only once). Computing
properties of random walks requires strongly con-
nected graphs, and hence we construct augmented
goal-dependency graphs and use those for estimat-
ing the hitting times of interest (see Appendix A).

Complexity of EscapeRooms. Based on Table 2,
we make a few observations. First, longer paths
from the start to the exit nodes result in slower dis-
covery of how to solve the environment. Similarly,
adding alternative paths that do not lead to the exit
(proportional to the graph width) also increase the
complexity and is reflected by the hitting time met-
ric. Finally, the environment complexity depends
not only on the spatial map design but also on the action space. We experimented with adding an extra
drop (key) action which significantly increased the hitting time for the exit node in goal-dependency
graph (Table 2, last row).

2.3 RL algorithms

In this work, we focus on a class of policy gradient methods known as Proximal Policy Optimization
(PPO) algorithms [11]. First, we evaluate the vanilla PPO trained using two different reward functions:
(1) PPO is trained using sparse rewards, where the agent receives +1 reward upon achieving the final
goal (e.g., reaching the exit); and (2) PPO+Bonus is trained using reward shaping where in addition
to the reward for achieving the final goal, the agent also receives +1 reward for achieving intermediate
goals (e.g., picking up keys or opening doors).
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Algorithm 1 Hierarchical PPO

1: Input: Meta-controller policy πM ,
Controller policy πC

2: for i = 1 to num_episodes do
3: subgoal g ← πM (s)
4: while s is not terminal do
5: F ← 0
6: s0 ← s
7: while not (g is reached) do
8: a← πC({s, g})
9: state s′, reward f ← Env(a)

10: intrinsic reward r ← Critic(s′, g)
11: PPO_update(πC , s, a, s′, r)
12: F ← F + f
13: s← s′

14: end while
15: PPO_update(πM , s0, g, s′, F )
16: subgoal g ← πM (s)
17: end while
18: end for

Next, we introduce a variant of PPO called HiPPO
(Hierarchical PPO) which borrows the hierarchi-
cal framework from [10], but replaces the hier-
archical value functions in the h-DQN with hi-
erarchical PPO policies. In more detail, HiPPO
uses a meta-controller policy to choose interme-
diate goals for the lower-level controller policy to
achieve2. The controller receives one-hot encoded
goals as part of its observation and intrinsic re-
wards for achieving intermediate goals chosen by
the meta-controller. The meta-controller receives
sparse extrinsic rewards from the environment for
achieving the final goal and is prompted to sub-
mit a new action (i.e., a new goal) each time the
lower-level controller accomplishes the previous
goal. The pseudocode for HiPPO is given in Al-
gorithm 1. In our experiments, we used a fixed
meta-controller that chooses a sequence of goals
along a random depth-first search path on the goal
dependency graph, rather than a trainable meta-
controller policy.

Lastly, PPO+Sketch is a variation of policy sketches [15] where the agent is provided with a sequence
of goals that leads to achieving the final goal. PPO+Sketch is identical to PPO except that in each
timestep, the current observation is concatenated with the current intermediate goal3, i.e., the actions
produced by the policy are always conditional on the current goal. Similar to PPO, and unlike HiPPO
and PPO+Bonus, PPO+Sketch does not use intrinsic rewards for achieving intermediate goals.

3 Experiments

We evaluate PPO, PPO+Bonus, PPO+Sketch, and HiPPO on EscapeRoom environments (a)-(g). We
limit the episode length to 1000 time steps. For each method and environment, we use the LSTM
policy with hidden dimension 64, and train for 10M total time steps on 128 vectorized environments
using the Adam optimizer, learning rate 2.5e-4, discount factor γ = 0.9, and TD λ = 0.95. We
evaluated each method and environment over 5 trials with different random seeds.

In Figure 1, we see that HiPPO consistently achieves the smallest average episode length and highest
success rate on all environments, thus demonstrating the benefit of using hierarchical policies that
operate at different temporal scales. Surprisingly, PPO with sparse rewards performs better than
PPO+Bonus, showing that the bonus rewards for achieving intermediate goals does not help a non-
hierarchical policy. We also find that PPO+Sketch performs worse than PPO indicating that merely
conditioning on subgoals might be suboptimal and destructively interferes with optimization.

Table 2: Depth, width, and hitting time (HT) statistics
computed for EscapeRoom environments (a)-(g).

(a) (b) (c) (d) (e) (f) (g)

exit depth 2 2 4 2 2 4 6
graph width 1 2 1 2 3 2 1
HT (w/o drop-key) 8.4 12.1 15.1 13.1 13.9 29.2 27.5
HT (w/ drop-key) 16.5 25.2 39.5 27.5 26.7 86.1 82.5

Environments (f) and (g) are more challenging
for RL agents due to greater exit depth of their
goal dependency graphs, i.e., the agent must
achieve a longer sequence of intermediate goals
before it can reach the exit. Similarly, the width
of the dependency graph introduces complex-
ity (due to paths that don’t lead anywhere), but
not as much as the depth. We find that the an-
alytically estimated hitting times given in Table 2 are in agreement with the observed empirical
performance of the RL algorithms. We also note that despite the complexity of the environments,
HiPPO is still able to make some progress on (f) and (g), while the other flat PPO baselines (with or
without reward shaping and/or policy sketches) fail to solve them (Figure 1).

2The action space of the meta-controller is the space of goals. The controller uses available primitive actions.
3Feeding goals as observations into the policy network is slightly different from the original design of

Andreas et al. [15]. We plan to investigate the original policy sketch architecture in future work.
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Table 3: Left: Average success rate (%) to reach the final goal over the last 10 training episodes. Right: Average
episode length (% of the max length, smaller is more efficient) over the last 10 training episodes. “–” indicates
that the method failed to reach the final goal within 1000 steps.

Average Success Rate Average Episode Length
(a) (b) (c) (d) (e) (f) (g) (a) (b) (c) (d) (e) (f) (g)

PPO 56.1 28.2 0.2 22.7 19.1 0.0 0.0 78.5 88.0 – 90.7 91.4 – –
PPO+Bonus 9.0 6.0 0.0 11.0 4.5 0.5 0.0 97.8 96.7 99.9 97.3 98.0 99.9 –
PPO+Sketch 23.2 14.5 0.4 12.6 10.7 0.1 0.0 91.9 94.4 99.9 95.0 95.7 – –
HiPPO 74.9 57.0 60.8 48.0 29.9 11.2 19.0 48.2 67.4 69.1 71.0 85.3 96.4 93.8
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Figure 1: Average episode length and success rate on EscapeRoom environments with goal dependency graphs
(a)-(g) from Table 1. In all environments, HiPPO achieves the best performance (smallest episode length and
highest success rate). In the most complex environments (f) and (g), HiPPO still makes some learning progress.
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Figure 2: Average number of timesteps to reach each intermediate goal on EscapeRoom (c). HiPPO is the
quickest method to achieve each goal.
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Figure 3: Correlation between the hitting time (Table 2)
vs. the average success rate and average episode length
(Table 3) of HiPPO for EscapeRoom environments (a)-
(g) from Table 1. This verifies that the hitting time is a
useful measure of complexity for RL environments.

In Figure 3, we illustrate the correlation between
the hitting time on goal dependency graphs (Ta-
ble 2) and the empirical performance of HiPPO
(Table 3) for different EscapeRoom environ-
ments, which demonstrates that analytically es-
timated hitting time is an informative metric for
measuring the complexity of an environment.

4 Discussion

We designed a simple grid-world EscapeRoom
environment where it is easy to measure the
exploration complexity by analyzing the corre-
sponding goal dependency graphs. We showed
that hitting times in goal dependency graphs are consistent with the empirical performance of PPO-
based methods, and is therefore a useful metric to measure the complexity of the environment. Finally,
we showed the performance improvement of HiPPO over other flat PPO baselines, demonstrating the
benefit of using hierarchical policies that operate at different temporal scales.
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A Details on computing hitting times

As we mentioned in Section 2.3, to compute the hitting time of random walk we need an augmented
goal-dependency graph (which can be generated procedurally from the graphs given in the main text).
An example augmented graph for EscapeRoom (c) from Table 1 is presented below.

start

All doors closed

key 1

room 1

start

First door open

key 2

room 2
room 1

start

Both doors open

exit

Found exit

The main difference from the goal dependency graph given in Table 1 is that when the agent picks up
a key and opens the corresponding door, it transitions into a subgraph that corresponds to the new
layout of the rooms accessible to the agent. Self-loops and transitions between the rooms represent
the moving behavior.

We set the following parameters for the random walk. With 80% chance, no transition happens. With
19% chance, the walk transitions from the current node along one of the outgoing edges. Finally, to
ensure strong connectivity of the graph, we add 1% chance of the agent moving back to the root start
node from any other node in the graph4. This corresponds to the situation where the agent is not able
to reach the exit within the time limit and must start a new episode.

4A similar approach is taken by the PageRank algorithm.

7


	Introduction
	Methods
	Goal-dependency graphs & exploration complexity
	EscapeRoom environments
	RL algorithms

	Experiments
	Discussion
	Details on computing hitting times

