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Abstract—Diverse models have been proposed over the past
years to explain the exhibiting behavior of memristors, the fourth
fundamental circuit element. The models varied in complexity
ranging from a description of physical mechanisms to a more
generalized mathematical modeling. Nonetheless, stochasticity, a
widespread observed phenomenon, has been immensely over-
looked from the modeling perspective. This inherent variability
within the operation of the memristor is a vital feature for the inte-
gration of this nonlinear device into the stochastic electronics realm
of study. In this paper, experimentally observed innate stochasticity
is modeled in a circuit compatible format. The model proposed is
generic and could be incorporated into variants of threshold-based
memristor models in which apparent variations in the output hys-
teresis convey the switching threshold shift. Further application as
a noise injection alternative paves the way for novel approaches
in the fields of neuromorphic engineering circuits design. On the
other hand, extra caution needs to be paid to variability intolerant
digital designs based on nondeterministic memristor logic.

Index Terms—Memristor, memristor model, neuromorphics,
stochasticity, stochastic electronics, threshold-based devices.

I. INTRODUCTION

THE term stochastic electronics has been coined lately with
the introduction of the non-deterministic behavior of cir-

cuit elements [1]. It is a newly established field of study that
has set the standards for incorporating the intrinsic variability
within the emerging devices into the circuit design and simula-
tion phases of the system process [2]. Stochastic electronics are
on the rise at a fast pace to compete with traditional technologies
in providing alternative solutions coping with the nanoscaling
and extensive integration in what is addressed to as beyond
Moore’s law [3]. It is the rising norm rather than the sheer trend
nowadays to have systems that exhibit a certain level of variabil-
ity in its operation in an attempt to be the best fit for the brain
scale mimicking behavior [4]. It allows for the accounting of
this random behavior in error-tolerant systems to aid in achiev-
ing great potentials in computation, processing and storage in
a model fitting to the biologically plausible systems. Particular
high profile candidates are novel non-volatile technologies, such
as spin transfer torque random access memory [5], phase change
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memory (PCM) [6], and conductive bridge RAM (CBRAM) [7].
The memristor is central to this operation as well, and it has been
considered in many applications to hold a close resemblance to
the basic building blocks of the human brain architectures. In
applications with biologically inspired stochastic computation
[7], [8] and neuromorphic systems [9]–[13], as synapses [14],
and neurons [15]–[18].

Memristors are typically composed of two conducting metal
electrodes separated by an insulating active layer that allows
resistive switching under an induced electrical excitation [20],
[21]. It is simply a resistor with memory, where the value of the
resistance is retained even after the removal of the acting poten-
tial. Threshold-less device models exhibit a continuous change
of resistance upon application of input stimuli [22]. However,
for threshold based devices, the change is only initiated once a
set threshold is reached [23]. The switching or shift from a low
to high resistance level and vice versa is initiated once the input
across the two terminals reaches a certain inherently set value.
Nonetheless, in any of the memristor types, the internal ionic
and chemical processes in these devices depend mainly on the
underlying material characteristics. It is an overall interaction
progression that involves interfacial features of the metals along
with the diffusion properties of the insulating material [24],
[25]. This complex entanglement predominantly controls the
overall operation and switching mechanism of the memristor.
Several models have been proposed to describe this behavioral
process. Propositions varied in complexity to either precisely
meet fabricated devices and physical dynamics [22], [26], [27]
or as a practical fit with a more abstract mathematical formula-
tion of a generalized switching process [23], [28]–[31]. Further
to the deterministic behavior of the memristor, the variants of
the underlying material composition and interactions impose a
new domain of operation. A stochastic outcome stemming from
the switching characteristics and the kinetics of the ionic and
chemical reactions is observed but immensely overlooked in the
circuit modeling process. Inducing the stochasticity feature into
the circuit models of the memristor paves the way for capturing
actual device behavior while overlying the physical variability
origins. It further allows for unconventional applications and
testing platforms.

In this paper, a circuit compatible model is proposed compris-
ing the switching point variability applied to threshold-based
models of memristors. It is an agile formulation that can be
easily integrated with any of the established models to induce
stochasticity while preserving the individual kinetics.The ex-
perimental observations and corresponding explanations of the
stochasticity among the emergent nonvolatile memories are ad-
dressed and introduced in Section II. It acutely stresses on the
variability of the physical medium and its consequent operation
influence. Particular elaboration on the origins and impact of the
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switching variability is further addressed with emphasis on the
model proposed and its subsequent verification. Section III cov-
ers the current and voltage threshold models that are extended to
account for variability with output results focusing on the vari-
ation of the typical hysteresis behavior. Design applications are
investigated in Section IV where analog and digital counterparts
provide a contrasting view of the stochasticity conditions. The
conclusion holds the overall summary of the proposed model
and the various resulting operations.

II. EMERGING TECHNOLOGIES AND STOCHASTICITY

The notion of stochasticity in the operation of memristors is
not a novel feature perceived in a unique device, but rather a con-
tinuum of advances for studies addressing the internal switching
phenomena and its underlying probabilistic nature [32], [33]. In-
trinsic variability has been perceived across a range of emerging
nonvolatile memory technologies such as PCM [6], [34], resis-
tive random access memory [35], [36], electrochemical met-
allization memory [37], CBRAM [7], and among oxide-based
memristive material [32], [33], [38]. Despite the differences in
the above technologies, the common ground agreement among
this variant of devices is essentially the consensus on the role of
the internal physical characteristics. To that end, stochasticity
is mainly attributed to the underlying constituting elements and
the resulting conducting filament (CF) formation process [20],
[24].

Supporting mathematical formulations are provided to ex-
plain the origins of the perceived stochasticity with varying
levels of investigation of the underlying physical medium. On
one extent, a fine behavioral perspective on the ionic process
and the vacancy generation consider them as the primary fac-
tors in the complex formation of the CFs between the two metal
electrodes of the device [35], [39]. A detailed model of the
switching of the metal oxides builds upon a probabilistic mi-
gration/recombination of ions and consequently the closing gap
between the filaments and the metal layer. Fig. 1 illustrates the
CFs variation along with the gap formation with the correspond-
ing motion dynamics of the ions. This gap width variation was
modeled with a Gaussian distribution to account for the random-
ness of the ions propagation along the complete dimension of the
device. A circuit compatible model for this innate stochasticity
mainly apparent in ReRAMs was presented in [40]. It conveys
the underlying mechanisms of the ions with added stochasticity,
providing a set kinetics of the device behavior.

On the other extreme, particularly in [7] and [41] switching
was seen to be variable with attributes originating from the prob-
abilistic formation/rupture of the CF. This status arises due to
the non-deterministic residue that remains after the rupture of
the filament in the reset process. A resultant output of this in-
herent variability is the variation of the high and low resistance
states, where the values follow a log-normal distribution as fit-
ted to the experimental measurements under weak programming
conditions. That is where the subthreshold voltage application
will have a vital effect on the resultant behavior. This analyti-
cal model captures the eventual response of the device and its
corresponding resistance states, Ron and Roff, respectively.

Fig. 1. CFs-Gap Variation. (a) Memristor microscopy (reprinted with permis-
sion from [19]). (b) Internal ionic migration and CF formation with the resulting
gap separation that controls the switching operation.

Further quantifying models that abstract the switching
process into a statistical event are prominently discussed in [32]
and [42]. They primarily build on experimental data acquisition
and consequent outcome fitting to a statistical distribution.
The conducted experiments composed of applying an external
stimulus to the terminals of the memristor and recording the
time it required for the device to switch. For a particular device,
the experiments were repeated several times for every input
pulse. In each trial, once the memristor switches to the ON/OFF
state, the time since the application of the input pulse is
recorded, and the device is then reset back to its initial OFF/ON
state. A distribution of values was depicted for the wait times
for a particular input voltage. The experimental values were
fitted into two main distributions, the Poisson [32], and the
log-normal distribution [42]. The implication of the wait time
distributions on the device operation is a probabilistic switching
behavior. The threshold voltage is no longer fixed, but rather
varies as a function of the amplitude and the temporal applica-
bility of the input bias. The switching mechanism, the physical
attributions, and the mathematical formulations of this particu-
lar mode of stochasticity are further illustrated in the following
sections.

A. Stochasticity Distributions

The model presented in [32] builds on experimental data ex-
traction for amorphous silicon (a-Si) memristors that yielded a
Poisson-like switching process. Whereas experiments for a tita-
nium dioxide (TiO2) reported in [42] resulted in a log-normal
distribution. Each of these models had its own set of equations
and physical attributions to the source of variability.

1) Poisson-Like Switching: The main assumption within this
model relied on the concept of a single or dominant CF for-
mation to trigger the switching to the ON state. The formation
process is based on the hopping of the metal particles, which are
positively charged, into the trapping sites within the a-Si layer.
It is a step-by-step chain growing process leading eventually to
the complete filament structure [32], [43]. A conducting path is
thus formed through the chain of metal particles and compris-
ing the mechanism behind the conduction and consequently the
resistance change.

This bias-dependent switching rate originates from the ther-
mally activated process of the hopping for the metal particles.
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Fig. 2. Stochastic Parameter τ fitting. Linear fitting for the wait time in
relation to the input voltage. Experimental fitting based on the data provided by
Jo et al. [32]. The fitting parameters are α0 and ε as depicted in equation (5).

The activation energy (E ′
a ) is bias-dependent and consequently,

is the hopping rate (Γ) that is determined according to

Γ =
1
τ

= ve−E
′
a (V )/kB T (1)

where v is the attempt frequency for the particle hopping, kB

is the Boltzmann’s constant, and T is the absolute temperature.
With the application of an input bias, the activation energy is
lowered which results in a variation in the waiting times and
switching rates, respectively.

An exponential relationship is thus formulated between the
characteristic wait time of the device and the applied input bias
as shown in equation (2). This model formulates a simple rela-
tion between the switching probability and its sole dependence
on the time and amplitude of the voltage applied to the termi-
nals of the device. That is with a higher level of voltage; the
switching is expected to occur at an earlier time compared to
lower levels

τ = τ0e
− V

V 0 . (2)

τ0 and V0 are considered as fitting parameters that are a char-
acteristic of the device and modeled in equations (3) and (4),
respectively. Explanation of the physical origins of these param-
eters is provided in the supporting information for [32]

τ0 = 1/vEa /kB T (3)

V0 = 2nkB T/e. (4)

Ea is the activation energy at zero bias. It has a linear relationship
with the voltage dependent activation energy, Ea = E

′
a(V ) +

eV/2n. Where e stands for the electron charge, V is the input
bias, and n corresponds to the number of trapping sites within
the device. Experimentally, within the logarithmic scale, a linear
relation was fitted according to equation (5) and depicted in
Fig. 2

log10(τ) = α0V + ε (5)

Fig. 3. Log-normal median switching time. (a) The exponential fitting for the
measured times with respect to the input voltage for the ON switching case. (b)
OFF switching case.

Fig. 4. Log-normal sigma. (a) The experimental sigma values represent orders
of magnitude for a given threshold (measured in (μs)) extracted for the ON
switching case. (b) OFF switching case.

where α0 and ε are fitting parameters whose values are set ac-
cording to the memristor model used. Based on the physical
attributions and the relationships formulated for the underlying
parameters, the switching process was considered stochastic
and following a Poisson process. The conducting mechanism
described earlier, in terms of the individual metal particles hop-
ping into the trapping sites, fits into this model of a summation
of independent events leading to the exponential distribution of
the switching wait times. At a certain point in time t, the proba-
bility of occurrence of a switching event within an infinitesimal
interval Δt is depicted in

P (t) =
Δt

τ
e−t/τ . (6)

This added feature paves the way for a control condition with
respect to the output behavior needed. Although the individual
switching points are random at instants of time, in general they
exhibit a mean activity following a Poisson process.

2) Log-normal Distribution: An alternative statistical fitting
to the switching behavior was observed in [42]. The experiments
were conducted on a titanium dioxide device in a similar fash-
ion to the above-described model. However, the switching times
were mapped into a log-normal distribution rather than a Pois-
son. Furthermore, in contrast to the first model, the stochasticity
conditions were tested for the ON and OFF switching. The ex-
ponential dependence on the input bias was apparent as well,
although with a different set of fitting parameters. Fig. 3(a)
and (b) depicts the fitting performed for the characteristic or
median wait time τ for the ON and OFF switching cases, re-
spectively.
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TABLE I
FITTING PARAMETERS FOR THE CHARACTERISTIC WAIT TIME

Poisson Log-normal (ON) Log-normal (OFF)

α0 ((s · V )−1 ) −2.67 2.26 −1.49
ε(s−1 ) 5.43 5.69 5.67

The switching mechanism in this type of device is primarily
based on electron tunneling through an insulating gap. The
application of an input voltage or current will modify the
width of this gap and the device resistance accordingly [44].
A positive bias will lead to an increase in the gap width as the
oxygen vacancies, which are positively charged, are repelled
towards the conducting channel. Thus leading to a higher
resistance or the OFF switching. On the other hand, a negative
bias will cause the vacancies to move away from the channel.
It reduces by that the gap width and device resistance; leading
to the ON state switching. The origin of the stochasticity
perceived in this model is the attributed to density fluctuations
of the distributions of the drifting vacancies/dopants. In other
words, statistical variations in the vacancy concentrations
rather than a smooth dispersion are the primary source
of variability leading to the log-normal switching process
depicted in

F (tswitch, τ, σt) =
1
2
erfc

[
− ln(tswitch/τ)√

2σt

]
(7)

where F stands for the cumulative distribution function for the
log-normal distribution, tswitch corresponds to the cumulative
time, and erfc is the complementary error function. The
distribution is characterized by its median time to switch τ
and the standard distribution σt . As illustrated earlier, τ was
calculated based on equation (5) by setting the corresponding
values of α0 and ε. Table I shows the values for the fitting
parameters according to the reported distribution and ON or
OFF switching. On the other hand, from the experimental data
(Fig. 4) there was no clear relation and a very weak dependence
between σt and the applied voltage. Thus reported hard values
and interpolation was required to have the corresponding
fitting. According to [45] the switching probability for a Δt is
given by

P (t) =
Δt

mean
=

Δt

τ
e−σ 2 /2 (8)

where τ is considered the median in the log-normal distribution,
whereas the mean (μ) is μ = τeσ 2 /2 .

The chosen setting, the distributions in particular, depends on
the speed and mechanism of the switching operation. Moreover,
within the realm of a single model, the range of values used
for these parameters dictates the operation region across time
of the corresponding memristor. As illustrated from equation
(6), infinitesimally small values of τ leads to almost abrupt
switching, whereas with larger values of τ the operation reverts
back to its original dynamics.

The general equations signifying the conductance
change over time are summarized in the following two

functions [22], [46]⎧⎨
⎩

u(t) = g(w, s, t)s(t),

dw

dt
= f(w, s, t), (9)

where the parameters s(t) and u(t) are the corresponding input
and output functions, respectively. They form the I–V relation
for the memristor depending on whether the device is a voltage
or current driven. Similarly, the function g() represents the mem-
conductance or memresistance according to the set parameters.
The liberty in the behavioral modeling of the device is mainly
captured within the formulation of the state derivative dw. On
the other hand, a general incorporation of the added stochastic-
ity is modeled as a function setting for the threshold and passed
over to the state function w. It could be easily mapped into any
of the threshold based functions where the switching location is
the sole parameter affected with stochasticity while preserving
the kinetics of the original models. Equation (10) reflects the
variability of the threshold voltage with the incorporation of the
stochastic term

dVT = αθ(VTo
− VT )dt︸ ︷︷ ︸

deterministic term

+ (|V | − ΔV − VTo
)dN(τ)︸ ︷︷ ︸

stochastic term

. (10)

The functions θ() and N(τ) are the step function and the
Poissonian/log-normal process, respectively. V is the input volt-
age, δV stands for the infinitesimal change for the voltage to
allow for the setting of the threshold voltage accordingly, α is
a fitting parameter set according to the model used, and VTo

is
the almost deterministic threshold voltage of the device. That
is, the voltage at which the switching becomes almost certain
following the switching probabilities described in equations (6)
and (8). Thus, at every instant of time the switching voltage has
a probability of changing according to the stochastic process
defined in N(τ).

B. Verilog-A Model

The endorsed stochasticity condition was modeled in a circuit
compatible model using Verilog-A. It allows for behavioral sim-
ulation and testing in an easy integration with SPICE modules.
It provides an easy integration of the stochasticity conditions
building solely on the statistical characteristics of the switching
process and overlying the underlying physical attributions.The
central idea of variability relies upon the shift in the switch-
ing point for the memristor as its particular value depends on
the probability calculated at every time step. Cumulatively the
complete operation follows a Poisson/log-normal distribution,
whereas the corresponding switching events are random in time
and decided upon at every instant as depicted in Algorithm 1.
While the V erlilog-A code is included in the appendix of the
manuscript.

That is at each instant of time, the switching might arbitrary
occur or not. The logic for the Verilog-A code is illustrated in the
following algorithm. The main concept lies in picking a sample
from a uniform random distribution and comparing it to the
probability of switching calculated at each point in time. In case
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Fig. 5. Experimental Poisson. (a) Data fitting for the switching times reported in [32] for varying input voltage pulse of 2.6, (b) 3.2 and (c) 3.6 V, respectively.
The characteristic switching times extracted increased with the smaller input voltage. The Distributions were fitted with the characteristics parameters accordingly.

Fig. 6. Simulation Data. (a) The simulated model incorporating the variability of the threshold voltage for the same set of input voltages for the reported
measurements. The voltage pulses of 2.6, (b) 3.2 and (c) 3.6 V were applied and mapped into the fitted Poisson.

Fig. 7. Log-normal Experimental fitting. The cumulative switching times distribution fitting of the experimental data reported in [42]. (a) The ON switching
distribution and (b) OFF switching.
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Fig. 8. Log-normal Simulations. Stochastic model simulations for the different voltage pulse inputs with the cumulative switching times for the (a) ON switching
and (b) OFF switching cases.

the calculated probability is greater than the chosen sample, the
threshold voltage takes the value of the instantaneous voltage,
and the switching occurs accordingly. Otherwise, the threshold
voltage remains at the almost deterministic case set for the
particular device. This stochasticity modeling is added to any
of the readily established memristor models. The main idea is
to have the threshold conditions variable at instants of time and
provide them as an input to the corresponding switching criteria.

C. Model Verification

The generalized stochastic model could be induced in simu-
lation to different memristor formulations emphasizing on the
non-deterministic behavior of the output hysteresis. A further
verification in terms of the mapping of the model to the ex-
perimental measurements of stochastic devices is illustrated in
this section. It primarily focuses on the switching mechanism
and its time–amplitude relationship. Where the average switch-
ing times would decrease with the higher input voltage levels
applied. It narrows further into the switching events of a par-
ticular input voltage set. It is with increasing probability, P (t)
increasing towards 1 that the device will switch when the time
of the application of the input pulse is larger than the switching
time constant. In other words, when t exceeds τ . It aims to pro-

vide a distribution fitting to the characteristics of the principle
device-extracted data.

1) Poisson Fitting: The basis of the proposed model is rooted
back to the quantification process applied to the abstract switch-
ing events of the memristor. In [32] a Poisson-like process was
experimentally extracted from the behavior of fabricated de-
vices. In this section, the extent to which the Verilog-A model
acutely fits into the distribution is measured through the appli-
cation of a set of voltage pulses with different amplitudes. The
applied input voltages are chosen to match the reported val-
ues for the measurements. The process of measurement is set
for each particular voltage. For every trial, a pulse is applied,
the time at which the switching occurs is recorded, the device
is reset back to its original state, and then another trial starts.
For simulation, a Python script was used to generate the SPICE
netlist and extract the resulting switching times. The algorithm
was run over for ten thousand trials for each voltage input.

The exact value of the average waiting time is mainly de-
pendent on the level of applied voltage. As illustrated earlier,
the amplitude level increase reduces drastically the time for the
device to switch. Fig 5(a) shows the experimental data reported
in [32] and its corresponding fitting to the Poisson switching
process for three different voltage pulses. Whereas Fig 6(b) rep-
resents the simulated results, for the same applied set of applied
voltage as the experimental ones, with the application of the
threshold variation technique within the memristor model. As
depicted in the graphs, the simulations match the measurements
and the time constants reported in the experimental data. The
higher the voltage applied, the switching times for the device
gets more concentrated towards the origin.

2) Log-Normal Fitting: The Verilog-A model incorporated
the log-normal distribution aside to the Poisson, with an op-
tion to choose the type of statistical variability to be induced.
The verification of this particular distribution is based on the
cumulative switching times, and their corresponding probabil-
ity, that were extracted from the experimental measurements
in [42]. As depicted in Fig. 7(a) and (b) the ON and OFF cumu-
lative switching probabilities are fit to the log-normal sigmoid
shaped function. Similarly to the simulation trials illustrated in
the earlier section, the trails were run for ten thousand times and
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the switching times were recorded. The switching probability
was then calculated by dividing the number of events, for each
switching time, over the total number of trials. Fig. 8(a) and (b)
shows the corresponding simulation results for the ON and OFF
switching, respectively. A clear dependence on the voltage is
apparent in both cases of switching. The probability of switch-
ing becomes higher much faster with higher input voltages. The
time constants also follow the same behavior to the experimen-
tal data where longer times are required to switch for smaller
voltages. However, there is a minor shift in terms of the time
constants and the shaping parameters from the experimental
data due to the dual approximation that was proposed in [42]
for τ and σt . Nonetheless, the overall behavior of the system is
captured by the simulation model using the fitting parameters
from Table I.

III. MEMRISTOR MODELS

The dynamics of the memristor device have been under thor-
ough investigation aside to modeling attempts to adequately
capture its non-linear behavior. Models proposed along several
domains have set standards in terms of complexity, accuracy
and practicality in simulation and circuit design [47]–[55]. In
general, charge or flux controlled operations are the two variants
imposing a dependence on the history of the applied current or
voltage respectively across the terminals of this nano-scale struc-
ture. The considered models in this paper are variants of voltage
and current driven into with emphasis on varying abstraction
and general fitting of the stochasticity effect. It starts with an
abstract model of voltage switching and considers as a well a
model fit for neuromorphic applications. Furthermore, the orig-
inal model presented by Pickett, mainly a current driven model,
is investigated and padded with stochasticity effects. Covering
by that a broad spectrum of models and a corresponding fit for
applications.

A. Bipolar Memristors With Threshold

In this model [28], [56], [57], the authors are introducing a
general model of the circuit element exhibiting a memory char-
acteristic with a rate of change related to the applied voltage.
In its deterministic version, no response is perceived below the
threshold. Its switching state starts to increase at a certain rate
β that acts as the slope of the internal dynamics of the memris-
tor. Fig. 9(a) depicts the general shaping of the threshold based
memristive device. Its behavior is modeled by a linear I–V rela-
tionship and a shaping function describing the internal process
and the sensitivity to the limiting parameters as illustrated in

I = X−1VM (11)

dX

dt
= f(VM )[θ(VM )θ(Roff − X) + θ(−VM )θ(X − Ron)]

(12)⎧⎪⎪⎨
⎪⎪⎩

f(VM ) = βVM − 0.5β[|VM + Vt | − |VM − Vt |],

dVT = αθ(VTo
− VT )dt︸ ︷︷ ︸

deterministic term

+ (|V | − ΔV − VTo
)dN(τ)︸ ︷︷ ︸

stochastic term

. (13)

Fig. 9. Model Dynamics. (a) Internal dynamics of the voltage controlled
model. (b) Stochastic dynamics. resultant variation in the threshold voltage
with the mere shift in the location of switching and preservation of the original
function kinetics.

Fig. 10. Variability of the threshold voltage. (a) Response to a sinusoidal input
voltage showing the larger variation particularly at closer voltages to the original
threshold. (b) A finer resolution of the threshold variation.

The memristance is reflected within the state variable X and
is limited by the upper and lower boundaries Roff and Ron. The
function θ is the step function responsible for enforcing this
constraint. Incorporating the variability into this model follows
a straightforward approach where the threshold voltage Vt is
varied in a way abiding by the stochasticity measures explained
earlier and depicted in (13). It allows for sub-threshold switch-
ing in a non-deterministic fashion where the value of the point
of switching is related to the input voltage application time and
amplitude. The direct implication to the inherent stochasticity
is a variable threshold voltage that is particularly susceptible to
voltages close to its original fixed value where a higher prob-
ability of switching occurs. The variation of the threshold is
apparent in Fig. 10(b) that depicts the variation in response to
the input voltage application.This behavior is reflected in the
shaping function fluctuation at the point of switching while pre-
serving the kinetics of the system as shown in Fig. 9. Moreover,
the resultant output for this stochastic behavior is apparent in
the hysteresis depicting the relation between the voltage and
current respectively. Instead of having a single response for a si-
nusoidal input, the output is tainted with added inner hysteresis
encapsulated within the outer limits set by the deterministic
threshold voltage. Fig. 11(a) shows the original graph aside to
the stochastic output in Fig. 11(b).

B. Analytical Memristor Model

A slower version of memristors, particularly suitable for neu-
romorphic applications, is presented in the model in [58]. Sev-
eral fabricated devices have been aligned into the equations of
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Fig. 11. Stochastic Hysteresis Output. (a) Deterministic output of the model
with the parameters specified in [57]. (b) The stochastic output with the outer
hysteresis setting confining the subthreshold stochastic switching.

the proposed model based on a fine tuning of the fitting param-
eters. It is set to a generalized form that is characterized by a
nonlinear I–V relationship as shown in (14), where the param-
eters a1 and a2 are used as amplitude parameters to account
for the conductivity of the different device structures along with
polarity of the applied input. Moreover, a control factor is also
included where b calibrates the intensity of the threshold in
relation to the voltage amplitude

I(t) =

⎧⎨
⎩

a1x(t)sinh(bV (t)), V (t) ≥ 0

a2x(t)sinh(bV (t)), V (t) < 0
(14)

dx

dt
= g(V (t)).f(x(t)). (15)

The second characteristic equation is mainly the state variable
x with two functions responsible for controlling the operation, a
threshold imposing factor and a boundary molding conditioning
(15). The function g(V (t)) depicted in (16) introduces thresh-
old voltages in the positive and negative regions Vp and Vn

respectively, with no change allowable between these limiting
points. Moreover, the rate of change beyond the set threshold is
controlled by the variable Ap and An

g(V (t))=

⎧⎪⎪⎨
⎪⎪⎩

Ap(eV (t) − eVp ), V (t) > Vp

−An (e−V (t) − eVn ), V (t) < −Vn

0, −Vn ≤ V (t) ≤ Vp

(16)

dvp/n = α · θ(vp/n0 − vp/n )dt︸ ︷︷ ︸
deterministic term

+ (V − δV − vp/n )dN(τ)︸ ︷︷ ︸
stochastic term

.

(17)

Incorporating the stochasticity into this model adds a lot of
value to it as it is a prominent feature to have a reasonable level of
variability in the operation of neuromorphic circuits [60], [61].
It allows for having an inherent noise feature embodied within
a single circuit element that exhibits agility and integration over
large scale systems. Equation (17) covers the mathematical form
of the endorsed stochasticity on the positive and negative thresh-
olds. From the modeling perspective, tackling the stochasticity
application in this model requires a scaling to the parameter α0
as a response to the threshold voltage modification according to
the fit device. As the proposed fitting parameters are set based
on the device description in [59] where the positive threshold
voltage is set to 1.5 V, corresponding to three times smaller

Fig. 12. Analytical Model Threshold variability. (a) Stochastic setting of the
threshold voltage to reflect the non-deterministic internal operation of the device.
(b) A finer resolution of the threshold variation over time.

Fig. 13. Analytical Stochastic Memristor Model. (a) Deterministic output of
the model parameters fit for the model in [59] for a sinusoidal input, Vp = 1.5
V, Vn = 0.5 V, Ap = 0.005, An = 0.08, xp = 0.2, xn = 0.5, αp = 1.2, αn =
3, a1 = 3.7(10−7 ), a2 = 4.35(10−7 ), b = 0.7, and xo = 0.1. (b) Stochastic
output with the same parameters with a modified intensity parameter α0 to fit
the positive and negative threshold accordingly.

than the original basis on which equation (5) was formulated.
Similarly, the negative edge threshold was set to 0.5 V corre-
sponding to around ten times smaller than the original values.
This deviation from the adopted equation values was compen-
sated by multiplying the threshold factor by the appropriate
calibrating factor. As depicted in Fig. 12 the abrupt spikes in
the threshold voltage was a direct consequence of the stochas-
ticity application. It modifies the threshold of the device based
on a probability of operation and switching. Furthermore, this
variation was directly conveyed in the I–V relationship where
the point of operation is divergent from the deterministic ones
due to the induced non-determinism of the underlying behav-
ior. Fig. 13(a) shows the original output response whereas (b)
incorporates the stochasticity along with the original output.

C. Simmons Tunnel Barrier Model

An acutely fit model to the measurement and experimental
data, the Pickett model [44] is a nonlinear representation of
the bipolar switching. Its conductance change is based on a
Simmons tunnel barrier width w that lies in series with an
internal resistor cumulatively affecting the overall device char-
acteristics. The applied current triggers the change of the state
variable w with time due to its exponential effect on the velocity
of the ionized dopants. This dependence leads to a nonsymmet-
rical ON and OFF switching dynamics with an ionic diffusion
highly susceptible to the polarity of the input. The general equa-
tions portraying the behavior of this memristor model are rooted
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back to the physical realizations attained for fabricated devices
and fitted through an extensive regression analysis.

OFF switching (i > 0)

dw

dt
= foff sinh

(
i

ioff

)
exp

[
−exp

(
w − aoff

wc
− |i|

b

)
− w

wc

]
.

(18)
ON switching (i < 0)

dw

dt
= fonsinh

(
i

ion

)
exp

[
−exp

(
−w − aon

wc
− |i|

b

)
− w

wc

]
.

(19)
This current driven model has threshold values in the ON

and OFF switching that act as a limiting factor for the change
in the state, which is considered negligible below the assigned
constraining boundaries. Moreover, the rate of change is tuned
through the fitting parameters fon and foff, and the state variable
x is confined within its set boundaries through the parameters
aon and aoff on both edges.The current-voltage relationship is
not an explicit one but rather based on the Simmons tunneling
model [62]

i =
joA

(Δw)2

(
φ1e

−B
√

φ1 − (φ1 + e|vg |)e−B
√

φ1 +e|vg |
)

(20)

daon/off = α · θ(a0 − aon/off)dt︸ ︷︷ ︸
deterministic term

+ (w − δw − a0)dN(τ)︸ ︷︷ ︸
stochastic term

. (21)

The parameters in (20) are set in the spice model provided
by Pickett [63] where a series resistance Rs of 215 Ω along
with the tunnel barrier constitute the internal structure of the de-
vice and its corresponding state. The stochasticity in this case,
is incorporated in a similar fashion to the prior models where
the current threshold is the affected parameter. Equation (21)
induces the stochastic dimension into the model with a varia-
tion set on the a parameter that governs the switching points
of the model. On a finer scale with respect to the model fit-
ting parameters, the equation for the variability is adjusted by
a multiplication of the instantaneous resistance and the input
current to account for the respective probability of switching
below the set current limits. Considering the difference in the
negative and positive thresholds, the probabilities are also fit to
account for the polarity impact. That is the Set/Reset regions are
both induced with stochasticity factors adjusted accordingly. In
a form of a reversed status of the I–V relationship, the Simmons
tunnel barrier model has threshold currents in the range of μA.
Thus, the instantaneous modification of threshold is not easily
conveyed in the hysteresis figure. Its primary impact is basically
in the values of the underlying resistance. However, holding the
threshold voltage at the point of variation for an arbitrary period
of time prior to resetting it to its original value, allows for this
corresponding variability to be easily depicted in the hysteresis.
This mechanism is shown in Fig. 14 with the threshold variation
over the sinusoidal input. Moreover, the direct impact of this
variability on the threshold is an added hysteresis modification
that reflects the underlying setting. Fig. 15(a) and (b) shows the
deterministic and stochastic behavior of the model, respectively.
The internal kinetics are smooth and slow resulting in a minor
variation in the location of the switching point with conservation

Fig. 14. Simmons Tunnel Barrier Model. (a) The variation of the threshold
current as a response to an applied current input with incorporated stochasticity.
(b) The threshold values with a finer resolution on the variation over time.

Fig. 15. Tunnel Barrier Model Stochastic Hysteresis. (a) Deterministic output
of the model parameters for a sinusoidal input, ioff= 115 μA, ion= 8.9 μA,
aon= 2e−9, aoff= 1.2e−9, fon= 40e−6, foff = 3.5e−6, b = 500e−6, wc =
107e−12, D = 3e−9 ,Ron = 100 ω, Roff = 20 kω. (b) Stochastic output with
the same parameters with a modified intensity parameter α0 to fit the positive
and negative threshold accordingly.

of the overall system mechanism in terms of the speed of oper-
ation and dynamics. Table II summarizes the memristor models
covered and the parameter affected by the stochasticity.

IV. APPLICATIONS

The characteristic features of the memristor have allowed for
its integration into a broad set of applications including both
analog and digital alike. Whether in IC design [19], [64], neuro-
morphics [65], [66], memory [67], [68] and digital applications
[69], [70], [71]. Most implementations are prone to a factor of
noise [72]; some actually use this parameter rather than com-
bating it to help in improving the system performance. On the
other hand, while others, particularly digital applications, tend
to have stringent settings where the level of adherence to the
original functionality provides a measure of robustness and re-
peatability conditions. Thus, the memristor innate stochasticity
could be utilized as an alternative to noise injection in circuits
where such behavior is beneficial in nature. It accommodates
novelties in the design paradigm mapping to the stochastic elec-
tronics class of operation. It accounts for the inherent variability
of the device kinetics, particularly the threshold and switching
parameters to account for the variation required to randomize
the noise effect and the consequent operation. On the other hand,
digital applications tend to be more deterministic, and any shift
from the expected output would overly change the circuit be-
havior or corresponding functionality. Two applications in the
neuromorphic field and digital logic show contrasting views in
terms of the use of the stochastic memristor within its design
circuits.
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TABLE II
MEMRISTOR MODELS WITH STOHCASTICITY INCORPORATED

Model State Equation Stochastic Variable

Bipolar Memristor Model [56]
dX

dt
= f (VM )[θ(VM )θ(Roff − X ) + θ(−VM )θ(X − Ron)] Threshold Voltage Vt

f (VM ) = βVM − 0.5β [|VM + Vt | − |VM − Vt |]
dx

dt
= g(V (t)).f (x(t))

Analytical Memristor Model [58] g(V (t)) =

⎧⎪⎪⎨
⎪⎪⎩

Ap (eV ( t ) − eV p ), V (t) > Vp

−An (e−V ( t ) − eV n ), V (t) < −Vn

0, −Vn ≤ V (t) ≤ Vp

Threshold voltages Vp and Vn

Simmons Tunnel Barrier Model [44]
dw

dt
= foffsinh

(
i

ioff

)
exp

[
−exp

(
w − aoff

wc
− |i|

b

)
− w

wc

]
Threshold parameters aoff and aon

dw

dt
= fonsinh

(
i

ion

)
exp

[
−exp

(
−w − aon

wc
− |i|

b

)
− w

wc

]

Fig. 16. Memristor based Neuron Circuit. The memristor is integrated into
the block of the neuron circuit. It randomizes the spiking instants due to the
switching threshold level variation

A. Neuromorphic Circuits

Neuromorphic circuits are hardware implementations that
tend to convey the fundamental operational principles of neu-
ral systems [73]. Its principal components are comprised of
neurons and synapses that are designed to capture the funda-
mental spiking behavior. A simple model widely used in the
research community is the Integrate and Fire neuron (I&F) [74].
It builds upon simplifying the overall neuron operation to an
integration of input charges, comparing with a set threshold,
and consequently spikes generation once the integrated voltage
exceeds the threshold. In its deterministic form, the I&F neuron
serves as a good approximation to the nervous system dynamics.
However, biological microcircuits are stochastic in nature and
recent studies in neuroscience have supported the benefits and
enhanced efficiency of injected noise in the process of learning
and information processing [75]. Inducing stochasticity into the
neuron takes on several forms, one of which is noise injection
directly into the neuron [76]. It provides the versatility required
for implementing stochastic spiking networks but at the expense
of higher power dissipation and area measures.

Alternatively, and as a crucial component to the inherent
stochasticity of the neuron operation, the memristor was in-
tegrated within the internal circuit of the I&F neuron model.
It acted as a stochastic comparator where the threshold of the
device would vary depending on a relationship binding the volt-
age application time and amplitude. Fig. 16 depicts the neuron
circuit with the memristor set at the last stage prior to the spike

Fig. 17. Spiking Output Behavior. The spiking instants are random, providing
a closer behavior to the biological systems and aiding in the learning and
information processing mechanisms.

shaping block. With the incoming voltage, the memristor would
behave in a stochastic manner, switching between high and low
states, and consequently providing a variation in the output cur-
rent levels. The voltage input to the spike shaping circuit was
extracted from the auxiliary resistor connected in series with the
memristor. Thus, the spiking instants were randomized through
the variation of the threshold level mimicking the behavior of an
added noise to the input current. This inherent variable threshold
molded the spiking instants and the overall system behavior.

The resultant switching characteristics shaped the random
spiking sequences to an extent akin to the biological neurons
responses as shown in Fig. 17. The incorporation of the mem-
ristor in the circuit of this neuromorphic architecture represents
a novel depiction of the circuit with enhancements in the area
and power dissipation metrics of the design [18]. This imple-
mentation served to show the efficiency of the stochasticity
of the memristor in providing an enhanced design. It aided in
providing scalability and compactness, the commonly desired
features, in very large scale integration circuits of the mind.

B. IMPLY Logic Application

In its abstract form, bipolar memristors could be seen as
ideal switches and consequently used in the design of logic
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Fig. 18. IMPLY Logic. (a) Imply logic circuit utilizing the memristors as
abstract switches top perform the imply (⇒) operation [77]. (b) The truth table
for the 2-input imply operation.

operations. It could hold one of the two states, high resistance
noted by Roff or what corresponds to a logic 0 and low
resistance state Ron corresponding to logic 1. Investigating the
applicability of the stochastic memristor within the digital logic
applications aims to provide a preliminary overview of the
underlying risks and functionality issues encountered. Thus,
the functionality of the imply (⇒) operator is considered with
the corresponding circuit implications addressed in regards to
the induced stochasticity.

The basic operation principle of the imply operator lies in
the conditional switching of a secondary memristor in response
to the state of the primary one. Fig. 18(a) depicts the underlying
circuit for this digital application. The two memristors, primary
(p) and secondary (q), are separately connected to tri-state volt-
age drivers at one end and to a common resistor RG at the other
end [77], [78]. The imply operation is based on a change of the
state of the output, which is the secondary memristor q, once
the primary memristor is 0. Ideally once the primary memristor
is in the low state and with the application of a toggling voltage
of VC ON D smaller than the switching threshold, the state of the
memristor is preserved, whereas the secondary memristor, or
the output, is set since the voltage drop across its terminal is
sufficient to switch it into the ON state. The truth table for the
operation highlighting the different cases for the inputs and the
corresponding output is illustrated in Fig. 18(b).

Experimental verification of operation performed in [77] tests
the complete set of cases illustrated in the truth table. However,
once incorporating the stochasticity of the memristor, a radical
shift is applied to the overall concept of operation. The condi-
tional voltage that was ensuring a stable resistance across the
primary memristor is no longer certain. On the contrary, stochas-
tic switching would be responsible for changing the state of the
p-memristor and consequently affecting the subsequent output
state of the memristor q. The effect of stochasticity is seen where
the p memristor is in the OFF state. Thoroughly investigating
the first combination of the IMPLY truth table, with both in-
puts in the open state, the primary memristor p along with the
secondary memristor q are set to 0. Fig. 19 shows a SPICE
simulation of the deterministic use of the memristor within the
IMPLY operator. As anticipated, the output was shifted into the
ON state due to the combination of the toggling pulses applied
at the input. However, once the weak programming conditions

Fig. 19. Deterministic IMPLY Output. The particular output of case 1 in the
truth table with both inputs sets to 0.

Fig. 20. Stochastic Imply. (a) Setting of both inputs p and q as a result of
the endorsed stochasticity. (b) The output result of an OFF state for p and q is
inverted due to the stochastic behavior of the memristors.

are active, the behavior of the logic circuit is compromised. As
depicted in Fig. 20(a) the toggling pulse was sufficient to switch
the output memristor into the ON state, but also managed to
switch the input into the ON state as well resulting in a destruc-
tive setting. Moreover, a more severe situation would be in the
case of the fast switching event of the primary memristor p and
consequently blocking the output from going into the SET state.
The result of such case is shown in Fig. 20(b) as another pos-
sible outcome of the induced stochasticity that could diminish
the basic operation principles of the logic operator. Stochas-
ticity of the memristor falsifies the expected digital behavior
and the overall functionality of the logic operator. It jeopardizes
the feasibility of the memristor functionality within the design
schemes of digital gates. A simple application in a basic IMPLY
circuit signifies the importance of robustness and consistency
in the logic outputs. It further elaborates on the added caution
required once dealing with non-linear devices and its underly-
ing non-deterministic response. Nonetheless, it is noteworthy to
mention that the memristor feasibility in the digital domain is
not destructive in all aspects. Its use within the stochastic com-
puting domain[79] is yet another proof of the huge potential
ahead for the memristor in analog and digital applications alike.

V. CONCLUSION

A study of stochasticity induced into a range of threshold-
based models for the memristor was presented. It provides a
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quantification of the variability in the formation of the CF, and
consequently in the switching characteristic between the two
resistance extremities. A circuit simulator compatible model
was provided, and its corresponding integration to various es-
tablished models have produced stochastic hysteresis outputs.
Its internal fitting parameters are adjusted accordingly for the
switching probabilities to account for the threshold and operat-
ing parameters set for the specified device models. Model ver-
ification in terms of the distribution fitting and mapping to the
original experimentally-extracted device characteristics signify
the accuracy and validity of the proposed model. Furthermore,
the utilization of the memristor in analog and digital applica-
tions provide contrasting views in terms of the enhancements of
the performance metrics or jeopardizing the original operation.
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APPENDIX

The complete Verilog-A code for the integration of the
stochasticity into the memristor models is available at
http://sensors.kaust.edu.sa

Algorithm 1 Verilog-A Stochasticity Model
if (V(tp,bn) > Vini) // initialization

Vini = V(tp,bn);
count = 0; //restart count, increasing volt.

end
else if (V(tp,bn) <= Vini) begin

Vini = V(tp,bn);
count = count+1; //Decreasing voltage

end
tau = pow(10, (-a*abs(Vm)+e)); // mean time
if (dist_f == 1)begin

lambda = 1/tau; // switching cst (Poisson)
prob_t = lambda*time_step; // instant. prb.

end else if ((dist_f == 2) begin // Log-normal
prob_t = (time_step/tau)*(exp(-pow(sigma,2)/2);

end
randm_p = abs($rdist_uniform(seed,0,1));

if (prob_t >= randm_p) begin
if ((Vm >0) && (Vm < Vto)) begin

Vt = Vm; //positive switching point
end
else if ((Vm<0) && (abs(Vm)<Vto) begin
Vt = Vm; //negative switching point

end
end
else if (prob_t < randm_p) begin

Vt = Vto;
end

REFERENCES

[1] T. J. Hamilton, S. Afshar, A. van Schaik, and J. Tapson, “Stochastic
electronics: A neuro-inspired design paradigm for integrated circuits,”
Proc. IEEE, vol. 102, no. 5. pp. 843–859, May 2014.

[2] M. Di Ventra, Electrical Transport in Nanoscale Systems. Cambridge,
U.K.: Cambridge Univ. Press, 2008.

[3] R. K. C. III, P. Lugli, and V. V. Zhirnov, “Science and engineering beyond
moore’s law,” Proc. IEEE, vol. 100, no. Centennial Issue, pp. 1720–1749,
May 2012.

[4] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge,
“Near-threshold computing: Reclaiming Moore’s law through energy ef-
ficient integrated circuits,” Proc. IEEE, vol. 98, no. 2, pp. 253–266, Feb.
2010.

[5] A. F. Vincent, J. Larroque, N. Locatelli, N. Ben Romdhane, O. Bichler,
C. Gamrat, W. S. Zhao, J.-O. Klein, S. Galdin-Retailleau, and D. Quer-
lioz, “Spin-transfer torque magnetic memory as a stochastic memristive
synapse for neuromorphic systems,” IEEE Trans. Biomed. Circuits Syst.,
vol. 9, no. 2, pp. 166–174, Apr. 2015.

[6] B. Rajendran, M. Breitwisch, M.-H. Lee, G. W. Burr, Y.-H. Shih,
R. Cheek, A. Schrott, C.-F. Chen, E. Joseph, R. Dasaka, H.-L. Lung,
and L. Chung, “Dynamic resistance—A metric for variability character-
ization of phase-change memory,” IEEE Electron Device Lett., vol. 30,
no. 2, pp. 126–129, Feb. 2009.

[7] M. Suri, D. Querlioz, O. Bichler, G. Palma, E. Vianello, D. Vuillaume,
C. Gamrat, and B. DeSalvo, “Bio-inspired stochastic computing using
binary cbram synapses,” IEEE Trans. Electron Devices., vol. 60, no. 7,
pp. 2402–2409, Jul. 2013.

[8] P. Knag, W. Lu, and Z. Zhang, “A native stochastic computing architec-
ture enabled by memristors,” IEEE Trans. Nanotechnol., vol. 13, no. 2,
pp. 283–293, Mar. 2014.

[9] A. Subramaniam, K. D. Cantley, G. Bersuker, D. Gilmer, and E. M. Vo-
gel, “Spike-timing-dependent plasticity using biologically realistic action
potentials and low-temperature materials,” IEEE Trans. Nanotechnol.,
vol. 12, no. 3, pp. 450–459, May 2013.

[10] K. D. Cantley, A. Subramaniam, H. J. Stiegler, R. A. Chapman, and
E. M. Vogel, “Hebbian learning in spiking neural networks with nanocrys-
talline silicon tfts and memristive synapses,” IEEE Trans. Nanotechnol.,
vol. 10, no. 5, pp. 1066–1073, Sep. 2011.

[11] M. T. Ghoneim, M. A. Zidan, K. N. Salama, and M. M. Hussain, “To-
wards neuromorphic electronics: Memristors on foldable silicon fabric,”
Microelectron. J., vol. 45, no. 11, pp. 1392–1395, 2014.

[12] K.-H. Kim, S. Gaba, D. Wheeler, J. M. Cruz-Albrecht, T. Hussain, N. Srini-
vasa, and W. Lu, “A functional hybrid memristor crossbar-array/CMOS
system for data storage and neuromorphic applications,” Nano Lett.,
vol. 12, no. 1, pp. 389–395, 2011.

[13] A. Ascoli, F. Corinto, M. Gilli, and R. Tetzlaff, “Memristor for neuromor-
phic applications: Models and circuit implementations,” in Memristors
and Memristive Systems. New York, NY, USA: Springer-Verlag, 2014,
pp. 379–403.

[14] D. Kuzum, S. Yu, and H. S. P. Wong, “Synaptic electronics: Ma-
terials, devices and applications,” Nanotechnology, vol. 24, no. 38,
Sep. 2013.

[15] M. Al-Shedivat, R. Naous, G. Cauwenberghs, and K. N. Salama, “Mem-
ristors empower spiking neurons with stochasticity,” IEEE J. Emerging
Sel. Topics Circuits Syst., vol. 5, no. 2, pp. 242–253, Jun. 2015.

[16] S. Shin, K. Kim, and S.-M. S. Kang, “Memristor macromodel and its
application to neuronal spike generation,” in Proc. Eur. Conf. Circuit
Theory Des., 2013, pp. 1–4.

[17] M. Pickett, G. Medeiros-Ribeiro, and R. Williams, “A scalable neuristor
built with Mott memristors.” Nature Mater., vol. 12, no. 2, pp. 114–117,
2013.

[18] M. Al-Shedivat, R. Naous, E. Neftci, G. Cauwenberghs, and
K. N. Salama, “Inherently stochastic spiking neurons for probabilistic
neural computation,” in Proc. IEEE/EMBS 7th Int. Conf. Neural Eng.,
2015, pp. 356–359.

[19] M. A. Zidan, H. Omran, C. Smith, A. Syed, A. G. Radwan, and
K. N. Salama, “A family of memristor-based reactance-less oscillators,”
Int. J. Circuit Theory Appl., vol. 42, no. 11, pp. 1103–1122, 2014.

[20] R. Waser and M. Aono, “Nanoionics-based resistive switching memories,”
Nature Mater., vol. 6, no. 11, pp. 833–840, 2007.

[21] T. Prodromakis, K. Michelakisy, and C. Toumazou, “Fabrication and elec-
trical characteristics of memristors with tio 2/tio 2+x active layers,” in
Proc. IEEE Int. Symp. Circuits Syst., 2010, pp. 1520–1522.



NAOUS et al.: STOCHASTICITY MODELING IN MEMRISTORS 27

[22] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” Nature, vol. 453, no. 7191, pp. 80–83, 2008.

[23] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, “Team:
Threshold adaptive memristor model,” IEEE Trans. Circuits Syst. I, Reg.
Papers., vol. 60, no. 1, pp. 211–221, Jan. 2013.

[24] H.-S. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee,
F. T. Chen, and M.-J. Tsai, “Metal–oxide RRAM,” Proc. IEEE, vol. 100,
no. 6, pp. 1951–1970, Jun. 2012.

[25] D. B. Strukov and R. S. Williams, “Exponential ionic drift: Fast switching
and low volatility of thin-film memristors,” Appl. Phys. A, vol. 94, no. 3,
pp. 515–519, 2009.

[26] T. Prodromakis, B. P. Peh, C. Papavassiliou, and C. Toumazou, “A versatile
memristor model with nonlinear dopant kinetics,” IEEE Trans. Electron
Devices., vol. 58, no. 9, pp. 3099–3105, Sep. 2011.

[27] D. B. Strukov, J. L. Borghetti, and R. S. Williams, “Coupled ionic and elec-
tronic transport model of thin-film semiconductor memristive behavior,”
Small, vol. 5, no. 9, pp. 1058–1063, 2009.

[28] Y. V. Pershin, S. La Fontaine, and M. Di Ventra, “Memristive model of
amoeba learning,” Phys. Rev. E, vol. 80, no. 2, p. 021926, 2009.

[29] A. G. Radwan, M. A. Zidan, and K. Salama, “On the mathematical mod-
eling of memristors,” in Proc. IEEE Int. Conf. Microelectron., 2010,
pp. 284–287.

[30] F. Corinto and A. Ascoli, “A boundary condition-based approach to the
modeling of memristor nanostructures,” IEEE Trans. Circuits Systems I,
Reg. Papers., vol. 59, no. 11, pp. 2713–2726, Nov. 2012.

[31] Z. Biolek, D. Biolek, and V. Biolkova, “Spice model of memristor with
nonlinear dopant drift,” Radioengineering, vol. 18, no. 2, pp. 210–214,
2009.

[32] S. H. Jo, K.-H. Kim, and W. Lu, “Programmable resistance switching in
nanoscale two-terminal devices,” Nano Lett., vol. 9, no. 1, pp. 496–500,
2008.

[33] Q. Li, A. Khiat, I. Salaoru, H. Xu, and T. Prodromakis, “Stochastic switch-
ing of tio2-based memristive devices with identical initial memory states,”
Nanoscale Res. Lett., vol. 9, no. 1, pp. 1–5, 2014.

[34] A. Lacaita, A. Redaelli, D. Ielmini, F. Pellizzer, A. Pirovano, R. Bez, “Elec-
trothermal and phase-change dynamics in chalcogenide-based memories,”
in Proc. IEEE Int. Electron Devices Meet., 2004, pp. 911–914.

[35] S. Yu, X. Guan, and H.-S. P. Wong, “On the stochastic nature of resistive
switching in metal oxide RRAM: Physical modeling, Monte Carlo sim-
ulation, and experimental characterization,” in Proc. IEEE Int. Electron
Devices Meet., 2011, pp. 17.3.1–17.3.4.

[36] I. Salaoru, A. Khiat, Q. Li, R. Berdan, C. Papavassiliou, and T. Prodro-
makis, “Origin of the off state variability in ReRAM cells,” J. Phys. D,
Appl. Phys., vol. 47, no. 14, p. 145102, 2014.

[37] S. Menzel and R. Waser, “Analytical analysis of the generic set and
reset characteristics of electrochemical metallization memory cells,”
Nanoscale, vol. 5, no. 22, pp. 11 003–11 010, 2013.

[38] D. Ielmini, C. Cagli, and F. Nardi, “Resistance transition in metal oxides
induced by electronic threshold switching,” Appl. Phys. Lett., vol. 94,
no. 6, p. 063511, 2009.

[39] D. Ielmini, “Modeling the universal set/reset characteristics of bipolar
RRAM by field-and temperature-driven filament growth,” IEEE Trans.
Electron Devices., vol. 58, no. 12, pp. 4309–4317, Dec. 2011.

[40] X. Guan, S. Yu, H.-S. Wong, “A spice compact model of metal oxide
resistive switching memory with variations,” IEEE Electron Device Lett.,
vol. 33, no. 10, pp. 1405–1407, Oct. 2012.

[41] S. Ambrogio, S. Balatti, A. Cubeta, A. Calderoni, N. Ramaswamy, and
D. Ielmini, “Statistical fluctuations in FfOx resistive-switching mem-
ory: Part I—Set/reset variability,” IEEE Trans. Electron Devices, vol. 61,
no. 8, pp. 2912–2919, Aug. 2014.

[42] G. Medeiros-Ribeiro, F. Perner, R. Carter, H. Abdalla, M. D. Pickett, and
R. S. Williams, “Lognormal switching times for titanium dioxide bipo-
lar memristors: Origin and resolution,” Nanotechnology, vol. 22, no. 9,
p. 095702, 2011.

[43] Y. Yang and W. Lu, “Nanoscale resistive switching devices: mechanisms
and modeling,” Nanoscale, vol. 5, no. 21, pp. 10 076–10 092, 2013.

[44] M. D. Pickett, D. B. Strukov, J. L. Borghetti, J. J. Yang, G. S. Snider,
D. R. Stewart, and R. S. Williams, “Switching dynamics in titanium
dioxide memristive devices,” J. Appl. Phys., vol. 106, no. 7, p. 074508,
2009.

[45] E. L. Crow and K. Shimizu, Lognormal Distributions: Theory and Appli-
cations, vol. 88. New York, NY, USA: Marcel Dekker, 1988.

[46] L. O. Chua and S. M. Kang, “Memristive devices and systems,” Proc.
IEEE, vol. 64, no. 2, pp. 209–223, Feb. 1976.

[47] A. Ascoli, F. Corinto, V. Senger, and R. Tetzlaff, “Memristor model com-
parison,” IEEE Circuits Syst. Mag., vol. 13, no. 2, pp. 89–105, Apr.–Jun.
2013.

[48] K. Eshraghian, O. Kavehei, K.-R. Cho, J. M. Chappell, A. Iqbal, S. F. Al-
Sarawi, and D. Abbott, “Memristive device fundamentals and modeling:
Applications to circuits and systems simulation,” Proc. IEEE, vol. 100,
no. 6, pp. 1991–2007, Jun. 2012.

[49] I. Vourkas, A. Batsos, and G. C. Sirakoulis, “Spice modeling of nonlinear
memristive behavior,” Int. J. Circuit Theory Appl., vol. 43, pp. 553–565,
2015.

[50] A. G. Radwan, M. A. Zidan, and K. Salama, “Hp memristor mathematical
model for periodic signals and dc,” in Proc. IEEE 53rd Int. Midwest Symp.
Circuits Syst., 2010, pp. 861–864.

[51] A. Ascoli, R. Tetzlaff, F. Corinto, and M. Gilli, “Pspice switch-based
versatile memristor model,” in Proc. IEEE Int. Symp. Circuits Syst., 2013,
pp. 205–208.

[52] J. Valsa, D. Biolek, and Z. Biolek, “An analogue model of the memristor,”
Int. J. Numerical Model., Electron. Netw., Devices Fields, vol. 24, no. 4,
pp. 400–408, 2011.

[53] D. Batas and H. Fiedler, “A memristor spice implementation and a
new approach for magnetic flux-controlled memristor modeling,” Nan-
otechnology, IEEE Trans. Nanotechnol., vol. 10, no. 2, pp. 250–255,
Mar. 2011.

[54] K. Xu, Y. Zhang, L. Wang, M. Q. Yuan, Y. Fan, W. T. Joines, and
Q. H. Liu, “Two memristor spice models and their applications in mi-
crowave devices,” IEEE Trans. Nanotechnol., vol. 13, no. 3, pp. 607–616,
May 2014.

[55] O. Kavehei, S. Al-Sarawi, K.-R. Cho, K. Eshraghian, and D. Abbott,
“An analytical approach for memristive nanoarchitectures,” IEEE Trans.
Nanotechnol., vol. 11, no. 2, pp. 374–385, Mar. 2012.

[56] Y. V. Pershin, and M. Di Ventra, “Spice model of memristive devices with
threshold,” Radioengineering, vol. 22, no. 2, pp. 485–489, 2013.

[57] D. Biolek, M. Di Ventra, and Y. V. Pershin, “Reliable spice simulations of
memristors, memcapacitors and meminductors,” Radioengineering, vol.
22, 2013.

[58] C. Yakopcic, T. M. Taha, G. Subramanyam, R. E. Pino, and S. Rogers,
“A memristor device model,” IEEE Electron Device Lett., vol. 32, no. 10,
pp. 1436–1438, Oct. 2011.

[59] T. Chang, S.-H. Jo, K.-H. Kim, P. Sheridan, S. Gaba, and W. Lu, “Synaptic
behaviors and modeling of a metal oxide memristive device,” Appl. Phys.
A, vol. 102, no. 4, pp. 857–863, 2011.

[60] J. Bill and R. Legenstein, “A compound memristive synapse model for
statistical learning through STDP in spiking neural networks,” Front.
Neurosci., vol. 8, 2014.

[61] S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang, and H.-S. P. Wong, “Stochastic
learning in oxide binary synaptic device for neuromorphic computing,”
Front. Neurosci., vol. 7, 2013.

[62] J. G. Simmons, “Generalized formula for the electric tunnel effect between
similar electrodes separated by a thin insulating film,” J. Appl. Phys.,
vol. 34, no. 6, pp. 1793–1803, 1963.

[63] H. Abdalla and M. D. Pickett, “Spice modeling of memristors,” in Proc.
IEEE Int. Symp. Circuits Syst., 2011, pp. 1832–1835.

[64] S. Shin, K. Kim, and S. Kang, “Memristor applications for programmable
analog ICs,” IEEE Trans. Nanotechnol., vol. 10, no. 2, pp. 266–274, Mar.
2011.

[65] M. Hu, H. Li, Y. Chen, Q. Wu, G. S. Rose, and R. W. Linderman, “Memris-
tor crossbar-based neuromorphic computing system: A case study,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 25, no. 10, pp. 1864–1878, Oct.
2014.

[66] M. Soltiz, D. Kudithipudi, C. Merkel, G. S. Rose, and R. E. Pino,
“Memristor-based neural logic blocks for nonlinearly separable func-
tions,” IEEE Trans. Comput., vol. 62, no. 8, pp. 1597–1606, Aug.
2013.

[67] M. A. Zidan, H. Omran, A. Sultan, H. Fahmy, and K. N. Salama, “Com-
pensated readout for high-density MOS-gated memristor crossbar array,”
IEEE Trans. Nanotechnol., vol. 14, no. 1, pp. 3–6, Jan. 2015.

[68] M. A. Zidan, A. M. Eltawil, F. Kurdahi, H. A. Fahmy, and K. N. Salama,
“Memristor multiport readout: A closed-form solution for sneak paths,”
IEEE Trans. Nanotechnol., vol. 13, no. 2, pp. 274–282, Mar. 2014.

[69] G. S. Rose, J. Rajendran, H. Manem, R. Karri, and R. E. Pino, “Leveraging
memristive systems in the construction of digital logic circuits,” Proc.
IEEE, vol. 100, no. 6, pp. 2033–2049, Jun. 2012.

[70] J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for
computing,” Nature Nanotechnol., vol. 8, no. 1, pp. 13–24, 2013.

[71] I. Vourkas and G. C. Sirakoulis, “A novel design and modeling paradigm
for memristor-based crossbar circuits,” IEEE Trans. Nanotechnol.,
vol. 11, no. 6, pp. 1151–1159, Nov. 2012.

[72] M. A. Zidan, H. A. H. Fahmy, M. M. Hussain, and K. N. Salama,
“Memristor-based memory: The sneak paths problem and solutions,” Mi-
croelectron. J., vol. 44, no. 2, pp. 176–183, 2013.



28 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 15, NO. 1, JANUARY 2016

[73] C. Mead and M. Ismail, Analog VLSI Implementation of Neural Systems.
New York, NY, USA: Springer-Verlag, 1989.

[74] G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. Van Schaik,
R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Häfliger,
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