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Abstract— Neuromorphic engineering aims to design hard-
ware that efficiently mimics neural circuitry and provides the
means for emulating and studying neural systems. In this paper,
we propose a new memristor-based neuron circuit that uniquely
complements the scope of neuron implementations and follows
the stochastic spike response model (SRM), which plays a
cornerstone role in spike-based probabilistic algorithms. We
demonstrate that the switching of the memristor is akin to the
stochastic firing of the SRM. Our analysis and simulations show
that the proposed neuron circuit satisfies a neural computability
condition that enables probabilistic neural sampling and spike-
based Bayesian learning and inference. Our findings constitute
an important step towards memristive, scalable and efficient
stochastic neuromorphic platforms.

I. INTRODUCTION

Neuromorphic engineering has been tightly following the-
oretical developments of neuroscience by designing efficient
silicon neurons [1] as analog or digital very large scale
integration (VLSI) circuits. The neuron has been successfully
decomposed into three functional blocks: the synapse (spike
receiver), the soma (spatio-temporal input signal integrator),
and the spike generator; application-dependent implementa-
tions for each block has been extensively studied [2].

Natural noise in biological neural networks [3] is seen
beneficial for information processing [4], and it can ex-
plain probabilistic inference in cortical microcircuits [5].
Nevertheless, neuromorphic research has mainly focused on
generalized deterministic integrate-and-fire (I&F) neurons
and has overlooked the possibility of building natively prob-
abilistic spiking units [2], [6]. At the same time, recent
theoretical work demonstrated that the behavior of networks
built of probabilistic neurons can be interpreted as Bayesian
computation [7]. Such networks can implement probabilis-
tic sampling and inference algorithms [8], and serve as
building blocks for biologically plausible implementations
of Boltzmann machines and deep belief networks [9]–[11].
The common approach to add stochasticity to a deterministic
neuron is to inject uncorrelated background noise into every
neuron [12]. Such an approach lacks power efficiency and
constrains scalability.

Circuits based on memristors have become one of the
recent trends in neuromorphic engineering as extremely
low-power and compact devices [14]. However, the focus
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Fig. 1. (A) The memristor-based stochastic SRM neural soma circuit.
(B) Inter-spike interval (ISI) distribution and the coefficient of variation
(CV) of ISI for the proposed stochastic neuron. Simulation parameters
were close to the data fit [13]: V0 = 156 mV , τ0 = 2.85 · 105s.

has been mainly on the memory and learning properties
of the memristor [15]. Moreover, recently discovered non-
deterministic behavior of the memristive switching [13], [16],
[17] based on stochasticity of nano-filament formation in thin
metal-oxide films [18] seems promising in the context of neu-
romorphic applications: Abrupt switching of the resistance in
such devices can be used for generating spontaneous events
further converted into spikes. This can provide efficient, low-
power, and scalable alternative implementation of the neuron
for probabilistic applications.

In this work, we propose a memristor-based stochastically
spiking neural soma circuit that natively realizes the spike
response model (SRM) with stochastic firing rate and is
compatible with arbitrary synaptic and spike shaping and
communication blocks (Fig. 1A). We show that probabilistic
switching of the metal-oxide memristor in the sub-threshold
regime matches probabilistic firing of the SRM. The inter
spike time intervals (ISI) generated by such a model precisely
follow a Poisson distribution (Fig. 1B) and satisfy the neural
computability condition for Boltzmann distributions [8]. Our
simulations based on experimental data suggest that such
neurons can be effectively used for building efficient neuro-
morphic platforms for probabilistic computation.

II. STOCHASTIC NEURON IMPLEMENTATION

The stochastic SRM model is a crucial building block for a
number of novel spike-based probabilistic algorithms. Here,
we introduce the SRM and show that memristive switching
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statistics, supported by recent experimental results, is akin to
the model behavior. The resistance of a memristive device
depends on the applied voltage history and is bounded by
the minimal Ron and maximal Roff stable values [19]. When
the voltage drop across the memristor is below a certain
threshold, the device exhibits a non-deterministic behavior: it
experiences spontaneous jumps in resistance from Roff to Ron
or vice versa, depending on the polarity [16]. We propose a
simple implementation of the stochastic neural soma block
that exploits such memristive switching.

A. SRM Neuron With Stochastic Firing Intensity

The spike response model (SRM) generalizes the classic
integrate-and-fire (I&F) neuron [20]. Such a model with
stochastic firing threshold was shown to be in a good
agreement with experimental cortical data [21]. At any time
point, such stochastic neuron has the following instantaneous
firing probability (also called stochastic firing intensity):

r(V − θ) = 1

τs
exp

(
V − θ
δV

)
, (1)

where θ is the effective threshold voltage, δV is the width
of the spike emission zone, and τs is the mean time to
spike emission at threshold. In other words, regardless of
the membrane potential value, at any time point, this neuron
can generate a spike with some probability.

Memristive switching process is intrinsically stochastic in
the sub-threshold regime and can be well approximated by
the inhomogeneous Poisson process with a time constant that
depends on the voltage drop across the memristor [13]:

τ(V ) = τ0 exp

(
− V
V0

)
, (2)

where τ0 and V0 are some constants of the appropriate
units. Since the Poisson firing rate is the inverse of the
Poisson time constant, it is apparent that (1) and (2) describe
identical processes. Based on this correspondence, we can
implement stochastic firing using spontaneous memristive
switching events for triggering neural spike generation.

Importantly, the firing rate exponentially depends on the
membrane voltage and makes such units satisfy the neural
computability condition for the Boltzmann distribution [8]: P [x] =

1

Z
exp

(
xTWx+ bTx

)
,

eVk(t) ∼ P [xk(t)|x−k(t)],
(3)

where k is the neuron index in the network, xk is the binary
(refractory / non-refractory) state of the neuron k, W and b
are the synaptic and bias weights, respectively. This property
allows us to use stochastic SRM, and hence the memristor-
triggered spiking as well, for implementing neural networks
that can sample from the Boltzmann distribution and perform
Bayesian inference (Fig. 2).

B. Neural Soma Circuit

The soma collects pre-synaptic input and generates action
potentials. The leaky I&F neuron model captures this func-
tionality by linearly summing synaptic currents and firing
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Fig. 2. (A) Winner-take-all (WTA) network has three layers: the input
encoding layer, the WTA output layer, and the inhibitory layer. Neurons
of the first two layers are stochastically spiking; the inhibitory layer is
triggered whenever it receives a spike. (B) Spiking restricted Boltzmann
machine (RBM) has two layers: the visible layer that encodes the data
and the labels, and the hidden layer. Each visible neuron is connected
to each hidden via a bi-directional plastic synapse.

an action potential once the membrane voltage Vm crosses
a fixed threshold. After each spike, Vm is reset back to
the resting potential, Vreset [20]. Such behavior can also be
described by a more general SRM with a fixed threshold.

To implement stochastic firing, spontaneous memristor
switching can be used. In the model we propose, a memristor
is added in parallel to the I&F circuit with the membrane
resistance Rm (Fig. 1A). The reset mechanism ensures that
the initial state of the memristor is Roff. Once it switches
to Ron, the current flowing through it undergoes a strong
positive jump, which is detected and converted into a spike.

The voltage across the memristor (the membrane voltage)
obeys the leaky integrator dynamics:

τm
dVm
dt

= −Vm +RIsyn(t), (4)

where τm = RCm is the membrane time constant, and R
is the total resistance of Rm connected in parallel to Ron/off
and Raux. With a high Ron/off-to-Rm ratio, the voltage across
the memristor Vm would be effectively independent of the
resistance changes of the memristor. Consequently, from (4)
it follows that the switching probability (2) is not affected
by the memristor dynamics and exclusively depends on the
integrated synaptic input, Isyn.

The ratio between the currents through the memristor after
and before switching, Ion and Ioff, is proportional to the ratio
between Roff and Ron. Depending on fabrication technology,
Roff to Ron ratio of a memristor varies in the range 102÷104.
This enables reliable detection of the switching events.

We simulated the behavior of a single stochastic neuron
for some arbitrary noisy synaptic input. Actual memristor
parameters τ0 and V0 were found by fitting (2) to the
experimental data in [13]. The simulations demonstrated that
the inter-spike interval (ISI) distribution of the generated
spike trains precisely followed the stochastic SRM model (1)
for different membrane voltages (Fig. 1B).

III. RESULTS

We consider two applications of the probabilistic neurons.
The first is a WTA network that can asynchronously adapt
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Fig. 3. Synaptic weights and output spiking. The synapses that connect input and output neurons are represented as images: black pixels denote
strong inhibitory connections, while red correspond to strong excitatory ones. (A) Initial random synaptic weights lead to random spiking of the
WTA neurons. (B) The network was exposed to the handwritten digits from 0 to 4 (5 classes): Input layer was encoding each input pattern for
40 ms with a silent delay of 10 ms between the patterns. Input images were fed in a randomly shuffled order. After several iteration of learning
with STDP rule, each WTA neuron had chosen a pattern and refined its incoming synapses to be sensitive to this pattern the most.

to the input patterns in unsupervised fashion. The second is
the spike-sampling algorithm that can be performed by our
neurons: we show how a small network of stochastic neurons
can perform sampling from a Boltzmann distribution.

A. Probabilistic Spiking Winner-take-all Network
Probabilistic neurons are necessary for building stochastic

spiking WTA networks [7]. The network is composed of
three layers: a layer of input encoding neurons is connected
in a feedforward fashion to a WTA layer followed by an
inhibitory layer; the latter is recursively connected to each
WTA neuron (Fig. 2A). The spikes generated by the middle
WTA layer represent the network’s output. Stochastically fir-
ing competing neurons drive the network and asynchronously
learn a Naive Bayes probabilistic model by adjusting their
incoming synaptic weights using a simple STDP rule.

We implemented the stochastic neural behavior using
spontaneous memristive switching model and trained the
network on MNIST handwritten digits. Our network had
1568 input neurons (2 encoding neurons per pixel for a
28 × 28 raster image), 16 competing WTA output neurons,
and one inhibitory unit. The spiking output was random and
unstructured before learning (Fig. 3A). After a few minutes
of learning, each neuron became almost exclusively receptive
to one of the patterns from the data, as evidenced by the post-
learning spiking behavior of the WTA and by the resulting
synaptic matrices (Fig. 3B).

Even though the network is trained in unsupervised man-
ner, each output neuron can be assigned the label of an input
pattern it actively spikes for. In this case, the network can be
used for classification. We tested WTA with different number
of output neurons and achieved the accuracy of about 78%
with a network that had 128 output neurons which closely
matches the results of the original theoretical work [7].

In order to learn incoming visual patterns, proba-
bilistic WTA performs the so-called spiking expectation-
maximization (SEM) algorithm. SEM relies on the assump-
tion that each neuron is stochastic and satisfies the neural
computability condition, i.e. its rate should exponentially
depend on the membrane voltage (1). We observed that
if this condition is violated—for example, by substituting
stochastic neurons with deterministic ones—the system no
longer converged to the desired Bayesian model.

B. Spike Sampling and Boltzmann Machine

The SRM is an important building block for the neural
sampling of Boltzmann machines [8]. This sampling strategy
is an alternative to Gibb’s sampling commonly used for
Boltzmann machines and is ideal for neuromorhic imple-
mentations [11]. Furthermore, it enables an on-line spike-
driven variant of the commonly used contrastive divergence
algorithm for training them. The individual units in the
Boltzmann machine are typically endowed with a sigmoid
activation function. To emulate this behavior with our neuron
model, we include a refractory period after every spike.
During this period, the spiking of the neuron is prevented.
The connections between units are implemented using linear
synapses with a time constant equal to the refractory period.

We trained the restricted Boltzmann machine (RBM) on
the MNIST data set using event-driven contrastive diver-
gence [11]. After training, the parameters of the RBM are
mapped onto the spiking neural network consisting of 824
visible units and 500 hidden units (Fig. 2B). 784 of these
visible units represented 28×28 images of handwritten digits,
and the remaining 40 were used for class labels (4 neurons
per label). Thanks to its generative properties, the same
network is capable of both discrimination (classification)
and generation (Fig 4). The classification accuracy of such
networks trained with event-driven CD is about 92% (chance
is 10%). The results suggest that our memristor-based neuron
model can become an ideal hardware building block for
neurormorphic Boltzmann machines.

IV. ALTERNATIVE SYSTEMS

An alternative approach to implementing stochastically
spiking neurons is based on the I&F model. It was shown
that the mean spiking rate of the leaky I&F neuron can
approximate the desired stochastic firing intensity when un-
correlated noise is injected into the neuron’s membrane [22].
However, this strategy requires a source of uncorrelated
noise [11]. For this purpose, one can use a multichannel
uncorrelated pseudorandom bit stream generator based on a
pair of linear feedback shift registers accompanied with a
global clocking mechanism [23]. To implement this, each
neuron must be equipped with an XOR element, a low pass
filter, and a low gain amplifier to convert the bit stream into
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Fig. 4. The neuromorphic restricted Boltzmann machine (RBM) using our memristive spiking neuron model. (A) Raster plot of the visible layer
spiking activity in the neuromorphic RBM: the neurons encoding data, vd, and the neurons encoding classes, vc. Until 0s, no input is provided
and the network is free running. At time 0s, a 28× 28 image of a hand-written digit 3 is presented, and the network correctly classifies it as a 3
by activating class neurons corresponding to a 3. At 0.3s, the right half of a digit 5 is presented, and the class labels are biased such that only 3
and 6 can activate (the others are strongly inhibited). Because only 6 is consistent with the presented data, the network generates the remaining
half as a 6 and activates the corresponding class label. (B) Layer-wise population firing rates during the experiment.

analog Gaussian noise signal [24]. Besides the area overhead
created by additional noise generation circuitry, the system
becomes less scalable and only approximately matches the
SRM. On the contrary, our proposed implementation exploits
intrinsic stochasticity of the memristive switching, avoids
noise generation expenses, and exactly matches the SRM.

V. CONCLUSION

In this work, we demonstrated a native implementation
of the stochastic SRM neuron based on non-determinism
of the memristive switching. According to the experimental
evidence, we approximated the switching with an inhomo-
geneous Poisson process and proposed a neural soma circuit
that uses the switching for triggering spike events. The
probabilistic spiking fully satisfied the neural computability
condition necessary for spike-based probabilistic computing.
We demonstrated how spiking winner-take-all network and
Boltzmann machine can make use of such stochastic neurons.
The analysis and simulations confirmed that our neurons
natively support probabilistic computation in spiking neural
networks.
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