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Abstract
We propose a new memristive neuron circuit that fol-
lows the stochastic spike response model (SRM) and
can be used for spike-based probabilistic algorithms.
We show that the switching of the memristor is akin to
the stochastic firing of the SRM. The analysis and sim-
ulations confirm that the proposed neuron circuit sat-
isfies the neural computability condition that enables
probabilistic neural sampling and spike-based Bayesian
learning and inference algorithms.

Motivation

• Recent theoretical studies have shown that proba-
bilistic spiking can be interpreted as inference and
learning in cortical microcircuits.

• The research on systems that use noise as a computa-
tional resource has become a rapidly growing field [1].

• However, such systems have two critical require-
ments: (i) the neurons should follow a specific model,
and (ii) stochastic spiking should be implemented ef-
ficiently for it to be scalable.

• We propose to use the inherent randomness of nano-
scale memristors [2] for implementing stochastically
spiking neurons that fulfill both requirements [3].

Notation

Parameter Description
Ron and Roff Low and high resistances of the memristor
τ0 Average switching time for a device under V = 0

V0 Memristive switching voltage sensitivity
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Stochastic Model of the Memristor
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Figure 1 : Memristor, the barrier and filament models.

To account for stochastic filament formation, we propose
a simple enhanced memristor model:

I = gM
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,

dw = f(w,V)dt︸ ︷︷ ︸
deterministic term

+(θ(V) ·D−w)dN(τ)︸ ︷︷ ︸
stochastic term

,

where the stochastic term follows the dynamics of an in-
homogeneous Poisson process dN(τ) with a time con-
stant that exponentially depends on applied voltage:

τ(V) = τ0 exp (−V/V0) ,

where τ0 and V0 are parameters of the appropriate units.
This leads to the following dynamics:
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Figure 2 : Deterministic and stochastic I-V curves.
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Figure 3 : Memristive neuron circuit.

• Each switching event generated by the memristor is
converted into an analog or a digital spike.

• The circuit was simulated for constant noisy input
synaptic currents. Spiking statistics and the power
dissipation on the memristor are presented below.
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Figure 4 : The distribution of inter-spike intervals (ISI).
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Figure 5 : Current through the memristor during spiking.
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Figure 6 : Synaptic weights and WTA spiking activity.

Parameter name Parameter value & classification accuracy
Output layer size 16 32 64 128
Accuracy 58.9% 64.2% 73.9% 78.4%
Robustness to memristor imperfections (32 output neurons)

Variability in τ0 0% 20% 40% 60%
Accuracy 64.3% 64.2% 62.5% 63.0%
Variability in V0 5% 10% 15% 20%
Accuracy 54.1% 42.0% 27.8% 16.6%

Table 1 : WTA Performance Under Different Conditions.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Spiking Boltzmann Machine

Spike encoding of the
visual pattern

Spike encoding
of the labels

Plastic
synapses

Hidden Layer

Visible Layer

[Every non-zero pixel and label drives
 the corresponding encoding neuron
 with positive injected current]

We trained an RBM and mapped its parameters onto a
spiking neural network consisting of 824 visible units and
500 hidden units. The same network was capable of both
discrimination (classification) and generation:

Figure 7 : Raster plot of the visible layer spiking activity in
the neuromorphic RBM (classification and restricted re-
construction tasks) and the reconstructed visual patterns.
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Discussion and Future Work

• The proposed memristive stochastic spiking neuron
is more area- and power-efficient than the classical
noise injection approach, and hence is scalable.

• Future work includes large-scale circuit-level simula-
tions and fully memristive spiking system design.

Conclusions
• The proposed neuron is a native implementation of

the stochastically firing SRM [4].
• The proposed noise generation mechanism based

on memristive switching is power-efficient.
• Full compatibility with WTA and RBM networks.
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