#### Learning HMMs with Nonparametric Emissions via Spectral Decompositions of Continuous Matrices Kirthevasan Kandasamy\* Maruan Al-Shedivat\* Eric P. Xing

## Summary

- NP-HMM-SPEC: Fast spectral learning algorithm with provable guarantees for HMMs with *nonparametric emissions*.
- Perturbation theory results are extended to *continuous matrices*.
- Sample complexity bounds for nonparametric HMMs are established.
- NP-HMM-SPEC algorithm uses Chebyshev polynomial expansion which enables fast continuous matrix operations.

**Code:** https://github.com/alshedivat/nphmm

# 1. Background & Motivation

## Spectral learning of discrete HMMs

[Hsu et al., 2009]

• Simple to implement.

Based on estimating  $P_1 = P(x_1), P_{21} = P(x_1, x_2), P_{3x1} = P(x_1, x_2 = x, x_3).$ Key step: compute the SVD of the estimated correlation matrix,  $\hat{P}_{21}$ .

- Theoretically appealing.
- An order of magnitude faster than EM.

### What if the observations are continuous variables?



• Transition:  $T \in \mathbb{R}^{m \times m}$ .

- Observation densities,
- $O_{1:m}$ , are  $\beta$ -smooth.
- **Discretize the observation space**, e.g., using bucketing. **Drawbacks:** *simple, but does not work well.*
- Use a parametric model for emissions, e.g., mixture of gaussians. **Drawbacks:** *introduces potentially irrelevant biases.*
- Embed HMM into an RKHS [Song et al., 2010]. **Drawbacks:** does not recover predictive probabilities and is slower.

# Our proposal

- Use continuous linear algebra with fast Chebyshev approximations.
- Virtually re-use the same algorithm with similar guarantees & speed.

29th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain



for  $t \ge 1$  and observation matrix O,  $\kappa(O) = \sigma_1(O) / \sigma_m(O)$ .







Figure 1: Performance (upper panels) and predictive densities (lower panel).

# On real data

| Dataset          | MG-HMM            | NP-HMM-BIN        | NP-HMM-HSE          | NP-HMM-SPEC        |
|------------------|-------------------|-------------------|---------------------|--------------------|
| Internet Traffic | $0.143 \pm 0.001$ | $0.188 \pm 0.004$ | $0.0282 \pm 0.0003$ | $0.016 \pm 0.0002$ |
| Laser Gen        | $0.33 \pm 0.018$  | $0.31 \pm 0.017$  | $0.19 \pm 0.012$    | $0.15\pm0.018$     |
| Patient Sleep    | $0.330 \pm 0.002$ | $0.38 \pm 0.011$  | $0.197 \pm 0.001$   | $0.225 \pm 0.001$  |

Table 1: The mean prediction error  $\pm$  standard error on the 3 real datasets.

## Key Takeaways

#### **NP-HMM-SPEC:**

- Provides guarantees in terms of  $L_1$  error.
- Orders of magnitude faster than competitors.
- Returns full predictive densities (in contrast to RKHS embeddings).

#### Ongoing research & open questions:

- Our computational methodology is only suitable for 1D. Efficient continuous linear algebra in multiple dimensions is an open question.
- Joint model learning & Chebyshev density approximation.



# 4. Additional Details & Proof Sketches

# Chebyshev technology

## **Townsend** [2014]

The low-rank decomposition of a cmatrix is done in two stages:



$$f(x) \approx \sum_{j=1}^{k} d_j c_j(y) r_j(x)$$

 $c_j(y)$  and  $r_j(x)$  are Chebyshev polynomials that match f(x) at the mesh points

Theorem 4.6 (Convergence of the functional GE) [Townsend, 2014]. If  $A \in \mathbb{R}^{[a,b] \times [c,d]}$  is a continuous analytic C-matrix with bounded columns,

under certain conditions

 $\implies$  GE series converge to A absolutely, uniformly, and geometrically.

# **Proof sketches**

**Assumption 1.**  $\pi > 0$  element-wise. Transition matrix,  $T \in \mathbb{R}^{m \times m}$ , and observation Q-matrix,  $O \in \mathbb{R}^{[0,1] \times m}$ , are of rank m.

**Assumption 2.** All emission densities belong to the *Hölder class*,  $\mathcal{H}_1(\beta, L)$ , i.e., are  $\beta$ -smooth functions.

## **Theorem (Concentration bound for KDE).**

- Let  $f \in \mathcal{H}_d(\beta, L)$  be a density on  $[0, 1]^d$ .
- The number of samples, N, satisfies  $N/\log N \gtrsim \epsilon^{-(2+d/\beta)}$ .

$$\Rightarrow \mathbb{P}\left(\|\hat{f} - f\|_{L^2} > \epsilon\right) \lesssim \exp\left(-N^{\frac{2\beta}{2\beta+d}}\epsilon^2\right),$$

## **Perturbation theory for Q/C-matrices**

# Lemma (Wedin's Sine Theorem for C-matrices).

- $A, \tilde{A}, E \in \mathbb{R}^{[0,1] \times [0,1]}$  where  $\tilde{A} = A + E$  and  $\operatorname{rank}(A) = m$ .
- $U, \tilde{U} \in \mathbb{R}^{[a,b] \times m}$  the first *m* left singular vectors of *A* and  $\tilde{A}$ .

$$\implies \forall x \in \mathbb{R}^m \| \tilde{U}^\top U x \|_2 \ge \| x \|_2 \sqrt{1 - 2 \| E \|_{L^2}^2} / \sigma_m(\tilde{A})^2$$

# Lemma (Pseudo-inverse Theorem for Q-matrices).

•  $A, \tilde{A}, E \in \mathbb{R}^{[0,1] \times [0,1]}$  where  $\tilde{A} = A + E$ 

$$\implies \sigma_1(A^{\dagger} - \tilde{A}^{\dagger}) \leq 3 \max\{\sigma_1(A^{\dagger})^2, \sigma_1(A^{\dagger})^2\} \sigma_1(E)$$