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. NP-HMM-SPEC: Fast spectral learning algorithm with provable guar-| = Continuous matrix operations On synthetic data Chebyshev technology Townsend [2014]

antees for HMMs with nonparametric emissions. Quuasi)-matrix A Q(uasi}-matrix  J3 C(ontinuous)-matrix (] S e o N o |
g - 4ovic iy o I . The low-rank decomposition of a cmatrix is done in two stages:

- Perturbation theory results are extended to continuous matrices. NP MM EM <N M
- Sample complexity bounds for nonparametric HMMs are established.
- NP-HMM-SPEC algorithm uses Chebyshev polynomial expansion .
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1. Background & Motivation
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Spectral learning of discrete HMMs [Hsu et al., 2009]

- Simple to implement. Algorithm: NP-HMM-SPEC P T T e e T T e e e under certain conditions
Based on estimating P, = P(x1), Poy = P(x1, x9), P3p1 = P(x1, 20 = T, x3). o —> QGE series converge to A absolutely, uniformly, and geometrically.

Key step: compute the SVD of the estimated correlation matrix, P»,.

Input: Data {X") = (X}, X/, X}//)}¥ | number of states m.

1. Obtain estimates ﬁl, ﬁgl, ﬁggl for Pl, Pgl, Psoq via KDE: PrOOf SketCheS
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- Theoretically appealing.

Assumption 1. 7 > 0 element-wise. Transition matrix, 7' € R™ " and

| . . i _ | 0,1} xm f rank m
. . . . S Figure 1: Performance (upper panels) and predictive densities (lower panel). - ©Pservation Q-matrix, O € R, are o -
What if the observations are continuous variables? 2. Compute Chebyshev polynomial representations for P,, P, Pso;. J (Upperp ) P ( panel . - . )
Assumption 2. All emission densities belong to the Hélder class, H.(5, L),

- An order of magnitude faster than EM.
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3. Compute the (m-truncated) C-matrix SVD, P,y = USV . On real data .e., are -smooth functions.

T T T T
@ @ @ @ @ . Transition: T € R™*™ Let U € ROU*™ pe the first m left singular vectors of P,.
O O O O O . Observation densities, 4. Compute the observable representation: Dataset MG-HMM  NP-HMM-BIN' NP-HMM-HSE ' NP-HMM-SPEC Theorem (Concentration bound for KDE).
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° @ @ @ @ O1..m, are g-smooth. by=U'P, bsx=(PU)P, B(x)=(U"Py)(U'Py) Internet Traffic 0.143 = 0.001 0.188 £ 0.004 0.0282 + 0.0003 0.016 £+ 0.0002 Let f € H4(B, L) be a density on |0, 1]“. »
. ~ o~ A~ -4 -1 1 — — ° . . N 0 > _ s ]
JL Output: Estimates by, b, B(z). Laser Gen 0.33£0.018  0.314+0.017 0.19£0.012 = 0.15=£0.018 The number of samples, N, satisfies ¥ /g N 2 €

Patient Sleep 0.330 & 0.002 0.38 &= 0.011 0.197 4= 0.001 0.225 4 0.001 ~ 28
& = P(IIf = flz>€) Sexp (—N7e),

Theorem (sample complexity for the bound on L;-error) Table 1: The mean prediction error + standard error on the 3 real datasets.

- Discretize the observation space, e.g., using bucketing. With probability 1 — &, the error |P(xy,...,2;) — Pz, ..., 2|5, < ¢ when

Drawbacks: simple, but does not work well N Key Takeaways Perturbation theory for Q/C-matrices

Nonparameteric HMM [this work]
N (t)2+3/%(0)2+3/5m1+3/26( 1\ NP-HMM-SPEC:
log )

Lemma (Wedin’s Sine Theorem for C-matrices).
.+ A, A E € ROUX0 where A = A+ E and rank(A) = m.
. U, U € Rletxm _the first m left singular vectors of A and A.

- Use a parametric model for emissions, e.g., mixture of gaussians.
Drawbacks: introduces potentially irrelevant biases. > . .
= - Provides guarantees in terms of L, error.

- 10g N ™ O (P21)4+4/5 0
- Embed HMM into an RKHS [Song .et.al., 201 O].. - | | o - Orders of magnitude faster than competitors.
Drawbacks: does not recover predictive probabilities and s slower. for ¢ = 1 and observation Q-matrix O, £(0) = 01(0)/ow(0). . Returns full predictive densities (in contrast to RKHS embeddings). s VY e R” U Uz, > HxHQ\/ 1 — 2| E|[2,/om(A)?

€

Discrete HMM [Hsu et al., 2009] Ongoing research & open questions: . .
Our proposal 9 ) | _ | . Lemma (Pseudo-inverse Theorem for Q-matrices).
N> t K(O) m o 1 - Our computational methodology is only suitable for 1D. Efficient e A A E e ROU<0 where A = A+ E
~ Jm(P21)4 5 continuous linear algebra in multiple dimensions is an open question. .
— 0'1(./4Jr — AT) < 3 max{al(AT)Q, O'l(A]L)Q} 0'1( )

- Use continuous linear algebra with fast Chebyshev approximations. € 0

- Virtually re-use the same algorithm with similar guarantees & speed. for t > 1 and observation matrix O, x(0) = 1(O)/om(O). - Joint model learning & Chebyshev density approximation.
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