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Abstract

This work relaxes the transfer learning problem intro-
ducing a supervised approach. We demosntrate that

• A small number of labeled data in the target
domain can leverage the classification accuracy of
the transfer sparse coding methods [1, 2].

• We propose a unified framework named
supervised transfer sparse coding (STSC) which
employs a supervised model to guide the way the
transfer sparse coding is performed.

Introduction

Domain transfer learning techniques often assume that la-
bels for the objects in the target domain are unavailable.
Common assumptions:

• Training set consists of objects from the source do-
main which are entirely labeled.

• Testing set consists of objects from the target domain
which are all unlabeled.

• Learning and classification is semi-supervised.
We relax these assumtions and study the following setting.
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Figure 1 : The training and testing layouts under the study.

In our setting (Figure 1):
• Training set consists of objects from both domains:

• Training objects from the source domain are entirely labeled.
• Training objects from the target domain are almost

unlabeled, i.e., a small fraction of them can be labeled.
• Testing objects are all unlabeled.
• The domains of testing objects regarded as unknown.
• Learning and classification is supervised.

Applications

The proposed setting is natural in applications that in-
herently deal with multi-domain mixed datasets:

•

Classification of images in social net-
works and media – a natively multi-
domain task: Objects usually appear
on a variety of backgrounds forming
essentially multi-domain sets.

•
Bilingual speech and text recogni-
tion, important for bilingual coun-
tries or international congresses.

In order to effectively learn robust representations of the
data under the new setting, we further propose a uni-
fied framework: Supervised Transfer Sparse Coding
(STSC), which simultaneously

1 optimizes the sparse representation,
2 performs domain transfer,
3 learns a classification model that guides 1 and 2 .

The principal difference between the well established
transfer sparse coding (TSC) [1] and the proposed STSC
approach is illustrated by Figure 2:

• The merged domain by TSC is difficult to classify.
• In STSC, SVM decision boundaries regularize the way

the domains are merged, and the resulting unified do-
main is much easier to be classified.
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Figure 2 : (a) Illustration of TSC. (b) Illustration of STSC.
The supervised learning component assists the domains to
be transferred in a better manner.

The STSC Approach

Supervised transfer sparse coding (STSC) consists of three
components: sparse coding, domain transfer, and super-
vised transfer correction via a multi-calss SVM-term.
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where X is the original training data, U is the dictionary,
V is the sparse code (the rest of the notation see in [4]).

Three-Step Optimization
In order to solve the problem (1), we propose the following
tree-step optimization algorithm.

1 Sparse Codes Learning is done by optimizing
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via a modified feature-sign algorithm [2].

2 Dictionary Learning is performed by solving
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using the algorithm proposed by Lee et al. [3].
3 SVM Learning

min
Γ

{
1

2
Tr

VΨV>
 − 1TΓ1

}
s.t. (Γ ◦ Y) 1 = 0,

0 � Γ � κ c,

which is a convex quadratic programming problem.

STSC Algorithm

Input: X – training data, Y – labels.
Input: α, µ, κ, λ, c, iter_num – parameters.
1: Build the MMD matrix M, Graph-Laplacian matrix
L, and label matrix Y for the labeled objects.

2: U← uniform random matrix; zero mean columns.
3: Γ ← 0, Ψ← 0.
4: for t = 1, · · · , iter_num do
5: Find V by solving Sparse Codes Learning.
6: Find U by solving Dictionary Learning.
7: Find Γ and compute Ψ by learning SVM.

Output: U – dictionary, V – sparse codes.

Results and Discussion

Below results justify our assumptions showing that:
1 A small number of labeled data can significantly im-
prove classification accuracy after TSC.

2 The proposed STSC is able to further improve the
performance of the classification (Figure 4).

USPS MNIST

Figure 3 : Examples from the USPS and MNIST datasets.
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Figure 4 : Classification accuracies LR and SVM on the
source and target domains of after applying TSC, STSC,
or no coding. The dataset: USPS – MNIST.

Dataset USPS–MNIST USPS–MADBase Caltech–Amazon
LR 35.5± 0.8 24.1± 3.0 39.7± 1.9
SVM 33.2± 1.5 19.3± 4.2 34.6± 3.7

TSC+LR 45.8± 1.8 24.1± 3.8 38.3± 2.1
TSC+SVM 44.9± 2.4 22.9± 4.3 32.5± 1.6
STSC+SVM 52.6± 3.8 24.0± 4.8 41.5± 2.5
STSC+LR 53.1 ± 2.2 31.0 ± 3.5 43.0 ± 2.1

Table 1 : Classification accuracy on the target domain of
the test set (5% labeled target objects in the training set).

Conclusions

• We reformulated the transfer learning problem and
introduced a novel relaxed cross-domain setting.

• We demonstrated that a small number of labeled
objects from the target domain can significantly
improve transfer sparse coding performance.

• We proposed a supervised transfer sparse coding
(STSC) framework and showed that simultaneous
optimization of sparse representations, domain
transfer, and supervised classification yields better
discriminative representations.
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