publications

* denotes equal contribution

An up-to-date list is available on Google Scholar.

PhD thesis

  1. Ph.D.
    Al-Shedivat, M. (2021). Principles of Learning in Multitask Settings: A Probabilistic Perspective. Carnegie Mellon University.

preprints

  1. arXiv
    A Field Guide to Federated Optimization
    Wang, J., Charles, Z., Xu, Z., Joshi, G., McMahan, H. B., Aguera y Arcas, B., Al-Shedivat, M., and others,
    arXiv preprint, 2021

conference & journal articles

2021

  1. EMNLP Oral
    Knowledge-Aware Meta-learning for Low-Resource Text Classification
    Yao, H., Wu, Y.-X., Al-Shedivat, M., and Xing, E.
    In Conference on Empirical Methods in Natural Language Processing (EMNLP), 2021
  2. NAACL Oral
    Progressive Generation of Long Text with Pretrained Language Models
    Tan, B., Yang, Z., Al-Shedivat, M., Xing, E., and Hu, Z.
    In Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL), 2021
  3. Federated Learning via Posterior Averaging: A New Perspective and Practical Algorithms
    Al-Shedivat, M., Gillenwater, J., Xing, E., and Rostamizadeh, A.
    In International Conference on Learning Representations (ICLR), 2021
  4. AISTATS
    On Data Efficiency of Meta-learning
    Al-Shedivat, M., Li, L., Xing, E., and Talwalkar, A.
    In International Conference on Artificial Intelligence and Statistics (AISTATS), 2021

2020

  1. Regularizing Black-box Models for Improved Interpretability
    In Advances in Neural Information Processing Systems (NeurIPS), 2020
  2. Contextual Explanation Networks
    Al-Shedivat, M., Dubey, A., and Xing, E. P.
    Journal of Machine Learning Research (JMLR), 2020

2019

  1. NAACL Full Oral
    Consistency by Agreement in Zero-shot Neural Machine Translation
    Al-Shedivat, M., and Parikh, A.P.
    In Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL), 2019
  2. A Baseline for Any Order Gradient Estimation in Stochastic Computation Graphs
    Mao, J.*, Foerster, J.*, Rocktäschel, T., Al-Shedivat, M., Farquhar, G., and Whiteson, S.
    In International Conference on Machine Learning (ICML), 2019

2018

  1. ICML Full Oral
    Learning Policy Representations in Multiagent Systems
    Grover, A., Al-Shedivat, M., Gupta, J.K., Burda, Y., and Edwards, H.
    In International Conference on Machine Learning (ICML), 2018
  2. ICML Full Oral
    DiCE: The Infinitely Differentiable Monte-Carlo Estimator
    Foerster, J.N., Farquhar, G.*, Al-Shedivat, M.*, Rocktäschel, T., Xing, E. P., and Whiteson, S.
    In International Conference on Machine Learning (ICML), 2018
  3. Learning with Opponent-Learning Awareness
    Foerster, J. N.*, Chen, R. Y.*, Al-Shedivat, M., Whiteson, S., Abbeel, P., and Mordatch, I.
    In International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2018
  4. ICLR Best Paper Award
    Continuous Adaptation via Meta-Learning in Nonstationary and Competitive Environments
    In International Conference on Learning Representations (ICLR), 2018

2017

  1. Learning Scalable Deep Kernels with Recurrent Structure
    Al-Shedivat, M., Wilson, A.G., Saatchi, Y., Hu, Z., and Xing, E.
    Journal of Machine Learning Research (JMLR), 2017

2016

  1. Learning HMMs with Nonparametric Emissions via Decompositions of Continuous Matrices
    Kandasamy, K.*, Al-Shedivat, M.*, and Xing, E.P.
    In Advances in Neural Information Processing Systems (NeurIPS), 2016
  2. ADIOS: Architectures Deep In Output Space
    Cissé, M., Al-Shedivat, M., and Bengio, S.
    In International Conference on Machine Learning (ICML), 2016
  3. Frontiers
    Stochastic Synapses Enable Efficient Brain-Inspired Learning Machines
    Frontiers in Neuroscience, 2016

2015

  1. Stochasticity Modeling in Memristors
    Naous, R., Al-Shedivat, M., and Salama, K.N.
    IEEE Transactions on Nanotechnology, 2015
  2. Memristors Empower Spiking Neurons With Stochasticity
    Al-Shedivat, M., Naous, R., Cauwenberghs, G., and Salama, K. N.
    IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2015
  3. NER
    Inherently Stochastic Spiking Neurons for Probabilistic Neural Computation
    Al-Shedivat, M., Naous, R., Neftci, E., Cauwenberghs, G., and Salama, K. N.
    In International IEEE/EMBS Conference on Neural Engineering (NER), 2015
  4. Learning Non-deterministic Representations with Energy-based Ensembles
    Al-Shedivat, M., Neftci, E., and Cauwenberghs, G.
    In International Conference on Learning Representations (ICLR), workshop track, 2015

2014

  1. Supervised Transfer Sparse Coding
    Al-Shedivat, M., Wang, J. J.-Y., Alzahrani, M., Huang, J. Z., and Gao, X.
    In AAAI conference on Artificial Intelligence, 2014

technical reports & short papers

  1. medRxiv
    Discriminative Subtyping of Lung Cancers from Histopathology Images via Contextual Deep Learning
    Lengerich, B.*, Al-Shedivat, M.*, Alavi, A., Williams, J., Labbaki, S., and Xing, E.
    medRxiv preprint, 2020
  2. arXiv
    Learning from Imperfect Annotations
    Platanios, E. A., Al-Shedivat, M., Xing, E., and Mitchell, T.
    arXiv preprint, 2020
  3. On the Complexity of Exploration in Goal-Driven Navigation
    Al-Shedivat, M.*, Lee, L.*, Salakhutdinov, R., and Xing, E.P.
    In Relational Representation Learning Workshop, NeurIPS, 2018
  4. Contextual Explanation Networks Enable Integrated Analysis Of Imaging And Genomic Data
    Lengerich, B.J., Al-Shedivat, M., Dubey, A., Alavi, A., Williams, J., and Xing, E.P.
    In 26th conference on Intelligent Systems for Molecular Biology (ISMB), 2018
  5. Evaluating Generalization in Multiagent Systems using Agent-Interaction Graphs
    Grover, A., Al-Shedivat, M., Gupta, J., Burda, Y., and Edwards, H.
    In International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2018
  6. NeurIPS Spotlight
    The Intriguing Properties of Model Explanations
    Al-Shedivat, M., Dubey, A., and Xing, E.P.
    In Symposium on Interpretable Machine Learning, NeurIPS, 2017
  7. NeurIPS Spotlight
    Personalized Survival Prediction with Contextual Explanation Networks
    Al-Shedivat, M., Dubey, A., and Xing, E.P.
    In Machine Learning for Healthcare Workshop, NeurIPS, 2017
  8. Scalable GP-LSTMs with Semi-Stochastic Gradients
    Al-Shedivat, M., Wilson, A.G., Saatchi, Y., Hu, Z., and Xing, E.P.
    In Bayesian Deep Learning Workshop, NeurIPS, 2016
  9. Learning Diverse Overcomplete Dictionaries via Determinantal Priors
    Al-Shedivat, M., Choe, Y.J., Spencer, N., and Xing, E.P.
    In Geometry in Machine Learning Workshop, ICML, 2016
  10. Neural Generative Models with Stochastic Synapses Capture Richer Representations
    Al-Shedivat, M., Neftci, E., and Cauwenberghs, G.
    In Computational and Systems Neuroscience (Cosyne), 2015
  11. FiO/LS
    Shaping of Femtosecond Laser Pulses with Plasmonic Crystals
    Shcherbakov, M., Vabishchevich, P., Zubjuk, V., Al-Shedivat, M., Dolgova, T., and Fedyanin, A.
    In Frontiers in Optics, 2013

other theses

  1. M.Sc.
    Al-Shedivat, M. (2015). Brain-inspired Stochastic Models and Implementations. KAUST.
  2. B.Sc.
    Аль-Шедиват, М. (2013). Фемтосекундная динамика преобразования поляризации света хиральными плазмонными метаматериалами. МГУ им. М.В. Ломоносова.